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0.1 Abstract

We are doing a Probability and Stochastic Processes review. This will take all Summer 2017 and

continue during the Fall 2017 semester. We will be covering the following textbooks (in depth

reading is in bold):

– David Williams, Probability With Martingales, 1991 [13]

– Rick Durrett, Probability: Theory and Example, 2010 [5]

– Robert Ash & Catherine Doleans-Dade, Probability With Measure Theory, 2008 [1]

– Patrick Billingsley, Probability And Measure, 1995 [3]

– Geoffrey Grimmett & David Stirzaker, Probability and Random Processes, 2001 [8]

– Geoffrey Grimmett & David Stirzaker, One Thousand Exercises in Probability, 2001 [7]

– Gerald Folland, Real analysis: modern techniques and their applications, 1999 [6]

– Pierre Bremaud, Point Processes and Queues, 1981 [4]

– David Levin, Yuval Peres, Elizabeth Wilmer, Markov Chains and Mixing Times,

2008 [10]

– Peter Morters & Yuval Peres, Brownian Motion, 2010 [11]

– Bernt ∅ksendal, Stochastic Differential Equations, 2013 [12]

– Alice Guionnet, MIT 18.176 Introduction to Stochastic Analysis, 2013 [9]

– Martin Bazant, MIT 18.366 Random Walks and Diffusion, 2006 [2]
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0.2 Syllabus
0.2.1 Probability Review:

Books Considered:

−[W] David Williams, Probability With Martingales, 1991

−[D] Rick Durrett, Probability: Theory and Example, 2010

−[A] Robert Ash & Catherine Doleans-Dade, Probability With Measure Theory, 2008

−[B] Patrick Billingsley, Probability And Measure, 1995

−[B] Pierre Bremaud, Point Processes and Queues, 1981

Calendar:

– Week 1 (May 29):

– [W] Chapters 1-5: Measure Spaces, Events, Random Variables, Independence and In-
tegration.

– [D] 2.3 Borel-Cantelli

– Week 2 (June 5):

– [W] Chapters 6-8: Expectation, Strong Law and Product Measure.
– [D] 2.4.7 Glivenko-Cantelli (SLLN) Theorem
– [D] 2.5 Convergence of Random Series
– [D] 2.2.3 Truncation

– Week 3 (June 12):

– [W] Chapters 9-11: Conditional Expectation, Martingales and Convergence Theorem.

– Week 4 (June 19):

– [W] Chapters 12-13: Martingales Bounded in L2 and Uniform Integrability.
– [D] Chapter 5: Martingales
– [Br] Chapter 1: Martingales

– Week 5 (June 26):

– [W] Chapter 14: Uniformly Integrable Martingales.
– [D] Chapter 5: Martingales
– [Br] Chapter 1: Martingales

– Week 6 (July 3):

– [W] Chapters 16-18: Characteristic Functions, Weak Convergence and Central Limit
Theorem.

– [D] 3.4.4 Berry-Esseen Inequality
– [D] 3.3.4 Polya’s Criterion (characteristic functions)
– [D] 3.9 Limit theorems in Rd

– Week 7 (July 10):

– [W] Chapters 0 & 15: Branching Processes and Applications.

Additional Notes

Whenever deemed necessary, we will look at Ash and Billingsley. Priority will be on Ash.
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0.2.2 Markov Chains

Books Considered:

−[P] David Levin, Yuval Peres, Elizabeth Wilmer, Markov Chains and Mixing Times, 2008

−[D] Rick Durrett, Probability: Theory and Example, 2010

Calendar:

– Week 8 (July 17):

– [P] Chapters 1 & 2: Markov Chains, Classical Examples.
– [D] Chapter 4: Random Walks

– Week 9 (July 24):

– [P] Chapters 4 & 5: Mixing and Coupling.

– Week 10 (July 31):

– [P] Chapters 6 & 7: Strong Stationary Times and Lower Bounds.

– Week 11 (August 7):

– [P] Chapters 9-11: Networks, Hitting Times and Cover Times.

– Week 12 (August 14):

– [P] Chapters 12 & 3: Eigenvalues and Metropolis/Glauber Dynamics.

– Week 13 (August 21):

– [P] Chapters 13 & 17: Eigenfunctions/Comparison of chains and Martingales on Evolv-
ing Sets.

– Week 14 (August 28):

– [P] Chapters 18 & 20: Cutoff and Continuous Time Chains.

– Week 15 (September 4):

– [P] Chapter 21: Countable States.

Additional Notes

In Peres, we will skip Chapters:

– 8: Shuffling → 16: Shuffling Genes

– 14: Path Coupling → 22: Coupling from the Past & 15: Ising Model

– 19: Lamplighter
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0.2.3 Brownian Motion & Stochastic Calculus

Books Considered:

−[P] Peter Morters & Yuval Peres, Brownian Motion, 2010

−[O] Bernt ∅ksendal, Stochastic Differential Equations, 2013

−[B] Pierre Bremaud, Point Processes and Queues, 1981

−[G] Alice Guionnet, MIT 18.176 Introduction to Stochastic Analysis, 2013

−[Ba] Martin Bazant, MIT 18.366 Random Walks and Diffusion, 2006

Calendar:

– Unit 1:

– [P] Chapter 1: Brownian Motion as a Random Function.

– Unit 2:

– [P] Chapter 2: Brownian Motion as a Strong Markov Process.

– Unit 3:

– [P] Chapter 3: Harmonic Functions, Transience and Recurrence.

– Unit 4:

– [P] Chapter 4: Haussdorff Dimension.

– Unit 5:

– [P] Chapter 5: Brownian Motion and Random Walk.

– Unit 6:

– [P] Chapter 6: Brownian Local Time.

– Unit 7:

– [O] Chapters 1-4: Introduction, Preliminaries and Ito Integrals.

– Unit 8:

– [O] Chapters 4 & 5: Ito Formula, Martingale Representation Theorem and Stochastic
Differential Equations.

– Unit 9:

– [O] Chapter 6: Filtering.

– Unit 10:

– [O] Chapter 7: Diffusions.

– Unit 11:

– [O] Chapter 8: Topics in Diffusion Theory.

– Unit 12:

– [O] Chapter 9: Boundary Value Problems.
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– Unit 13:

– [O] Chapter 10: Optimal Stopping.

– Unit 14:

– [O] Chapter 11: Stochastic Control.

– Unit 15:

– [O] Chapter 12: Mathematical Finance.

– Unit 16:

– [P] Chapter 7: Stochastic Integrals.

– Unit 17:

– [P] Chapter 8: Potential Theory of Brownian Motion.

– Unit 18:

– [P] Chapter 9: (Self) Intersections of Brownian Paths.

– Unit 19:

– [P] Chapter 10: Exceptional Sets For Brownian Motion.

Additional Notes

Try to get to Bremaud book and Guionnet’s notes as well. In Peres, we will skip Chapter 11:
Stochastic Loewner Evolution and Planar Brownian Motion.
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Chapter 1

Week 1: Measure Spaces, Events

and Random Variables
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1.1 Day 1: Measure Spaces

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Set Operations ∩,∪, (.)c, \ and A∆B = (A ∪B) \ (A ∩B) (symmetric difference)

Algebra Collection Σ0 of subsets of set S, S.T. stable under finitely many sets operations:

(i) S ∈ Σ0

(ii) F ∈ Σ0 =⇒ F c ∈ Σ0

(iii) F,G ∈ Σ0 =⇒ F ∪G ∈ Σ0

σ-algebra Collection Σ of subsets of set S, S.T. stable under finitely many sets operations:

(i) S ∈ Σ

(ii) F ∈ Σ =⇒ F c ∈ Σ

(iii) Fn ∈ Σ =⇒
⋃∞
n=1 Fn ∈ Σ

π-system Family of subsets of set S that is stable under finite
⋂

Measurable Space (S,Σ) and Measure Space (S,Σ,P)

σ-Algebra Generated by C: C=class of subsets of S ⇒ σ(C) =
⋂

Σi⊃C is a
σ-algebra on S

Σi

⇒ σ(C) = smallest σ-algebra on S containing C.

Borel σ-algebra B(S) = σ(open) (S =topological space)

Countable Additivity Just right: more powerful than finite additivity but does not lead to

contradictions (uncountable additivity: P(
⋃

[0,1]{x}) = 0 or 1?)

Measure µ : Σ→ [0,∞] with Countable additivity: P

⋃∞n=1

disjoint︷︸︸︷
An

 =
∑∞
n=1 P (An)

Finite Meas µ(S)<∞; Prob Meas µ(S)=1; σ-Finite Meas ∃ partition (Sn) with µ(Sn)<∞

Construction of Lebesgue Meas. Define it on simple sets (a, b] (guarantees no overlap): get

an algebra, extend via Caratheodory, argue the uniqueness.

Lebesgue σ-algebra Completion of B(R) with nullset.
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.

MAIN THEOREMS:

Vitali Sets On I = [0, 1]: x ∼ y ⇔ (x− y) ∈ Q. Let S/ ∼=set of equivalence classes determined

by ∼: these classes are nonempty (axiom of choice) and we can choose one element of each

equivalence class.

Axiom of Choice ⇒ ∃f : (S/ ∼)→ S = ∪A∈(S/∼)A (choose 1 element of each equiv. class).

V (S) := {f(A) : A ∈ (S/ ∼)}= set formed by picking exactly 1 element of each equiv class.

V (S) is not meas. (∵)Aq = {a+ q (mod 1) | a ∈ A} (q ∈ Q) we have a countably family of

pairwise disjoint sets whose union is [0,1]. µ([0, 1]) =
∑
µ(Aq) =

∑∞
i=1 µ(A) =∞× µ(A).

Banach-Tarski Paradox ∃F ⊂ S2 (Sphere in R3) S.T. S2 = ∪ki=1τ
(k)
i F ∀3 ≤ k <∞ (τ − i(k)=

rotation). F must be non-meas., otherwise length(F )=0.

Characterization of open subsets of R G ⊂ R open⇔G =
⋃
iOi, i ∈ I countable, Oi disjoint

open interval.

Generators of B(R), π-systems B(S) = σ(open) = σ(π(R)), with π(R) = {(−∞, x] : x ∈ R}

Uniqueness of Extension P1 = P2 (general: µ(Ω) < ∞) on a π-system ⇒ agree on σ(π).

Application, from CDF’s to probability laws with (−∞, x].

Caratheodory’s Extension Theorem Extend a pre-measure on an algebra, to a measure µ(·)

on σ(algebra). Used together with previous theorem.

Union Bound µ
(⋃n

i=1Ai
)
≤
∑n
i=1 µ(Ai)

Inclusion/Exclusion Formula A1, . . . , An ∈ Σ: µ(A1 ∪A2) = µ(A1) + µ(A2)− µ(A1 ∩A2) and

µ

 n⋃
i=1

Ai

 =
n∑
i=1

µ(Ai)−
n∑
i<j

µ(Ai∩Aj)+
n∑

i<j<k

µ(Ai∩Aj ∩Ak)− ..+(−1)n−1µ(Ai∩ ..∩An)

Nullsets
⋃

N(nullsets) = nullset

Baire Category Theorem X =
⋃

N Fn complete metric space (Fn closed) ⇒ ∃Fn S.T. F ◦n 6= ∅

Monotone Convergence of Measures An ∈ Σ:

?An ↗ A =⇒ µ(An)↗ µ(A)

?An ↘ A & ∃k S.T. µ(Ak) <∞ =⇒ µ(An)↘ µ(A)

Careful! (? 2) Fails if µ(An) =∞ ∀n

Example: An = [n,∞)→ ∅ =⇒ lim
n
µ(An) =∞ 6= 0 = µ(∅) = µ

(
lim
n
An

)
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1.2 Day 2: Events

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Almost sure A statement S holds almost surely (a.s.) if P (S) = 1.

Liminf of Sequences lim inf xn = lim
n

inf
k≥n

xk = sup
n≥1

inf
k≥n

xk exist (∵) inf
k≥n

xk=monotonic

Limsup of Sequences lim supxn = lim
n

sup
k≥n

xk = inf
n≥1

sup
k≥n

xk exist (∵)sup
k≥n

xk=monotonic

Liminf of Sets lim inf An =
⋃
n≥1

⋂
k≥n

Ak, ω ∈ all An’s except possibly a finitely many of An’s

Limsup of Sets lim supAn =
⋂
n≥1

⋃
k≥n

Ak, ω ∈ infinitely many An’s.

.

MAIN THEOREMS:

a.s. Intersection Fn ∈ F and P(Fn) = 1 =⇒ P(
⋂
n Fn) = 1

Sandwich Limits inf
n≥1

xn ≤ inf
n≥k

xn ≤ lim inf
n

xn ≤ lim sup
n

xn ≤ sup
n≥k

xn ≤ sup
n≥1

xn.

z > lim sup
n

xn =⇒ xn < z eventually (n big enough)

z < lim sup
n

xn ⇒ xn > z i.o.(infinitely often/infinitely many n).

Sandwich Limits of sets
⋂
k≥1

Ak ⊂
⋃
n≥i

⋂
k≥n

Ak ⊂ lim inf
n

An ⊂ lim sup
n

An ⊂
⋂
n≥i

⋃
k≥n

Ak ⊂
⋃
k≥1

Ak.

Fatou Lemmas Limsup/liminf on LHS for sets, on RHS for sequences.

1. P(lim sup
n

En) ≥ lim sup
n

P(En). Need P(·) finite (prob. measures OK).

2. P(lim inf
n

En) ≤ lim inf
n

P(En). All measures.

Proof: (click)

Sketch: cf. Williams + By Exercise 2.9 1lim supn En = lim sup
n

1En

⇒ P(lim sup
n

En) =
∫

lim sup
n

1EndP ≥ lim sup
n

∫
1EndP = lim sup

n
P(En).
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Borel-Cantelli 1
∑
n P(An) <∞ =⇒ P(An i.o) := P(lim supn An) = 0

Proof: (click)

P (lim supnAn) ≤ P
(⋃

n≥k An

)
≤
∑∞
k=n P(Ak)→ 0 , as n→∞

Convergence of Events {An} be a seq of sets: lim
n→∞

An = A⇐⇒ lim
n→∞

IAn(ω) = IA(ω) ∀ω.

Proof: (click)

(⇒) Assume that lim
n→∞

An = A. Consider the two following cases:

(i) ω ∈ A: lim inf
n→∞

An = A =⇒ ω belongs to all but finitely many of the sets An

=⇒ IAn(ω) = 1 for all but finitely many n =⇒ lim
n→∞

IAn(ω) = 1 = IA(ω).

(ii) ω /∈ A: lim sup
n→∞

An = A =⇒ ω belongs to at most finitely many of the sets An

=⇒ IAn(ω) = 0 for all but finitely many n =⇒ lim
n→∞

IAn(ω) = 0 = IA(ω)

(⇐) Assume that lim
n→∞

IAn(ω) = IA(ω) ∀ω. Consider two cases:

(i) limn→∞An = B exists for some set B 6= A:

=⇒ either B \A 6= ∅ or A \B 6= ∅ =⇒ lim
n→∞

An = B & lim
n→∞

IAn(ω) = IA(ω).

– If B \A 6= ∅: ω ∈ B \A Result====⇒
above

lim
n→∞

IAn(ω) = IB(ω) = 1

But, ω /∈ A =⇒ IA(ω) = 0 =⇒ lim
n→∞

IAn(ω) = IA(ω) = 0 ⇒⇐

– If A \B 6= ∅: ω ∈ A \B Result====⇒
above

limn→∞ IAn(ω) = IB(ω) = 0

But ω ∈ A =⇒ IA(ω) = 1 =⇒ limn→∞ IAn(ω) = IA(ω) = 1 ⇒⇐

(ii) The limit limn→∞An does not exist:

=⇒ lim inf
n→∞

An  lim sup
n→∞

An =⇒ ∃ω ∈ ∞ many An’s, but also ω 6∈ to ∞ many An’s.

=⇒ IAn(ω) =

 0, for ∞ many choices of n,

1, for ∞ many choices of n.
=⇒ IAn(ω) does not converge =⇒ the condition lim

n→∞
IAn(ω) = IA(ω) ∀ω, cannot hold.

Continuity of Prob. Measures {An} a sequence of events: An → A =⇒ lim
n→∞

P (An) = P (A)

Proof: (click)

Dr Can: As “An → A⇔ 1An → 1A” and 1An ≤ 1 ∈ L1(Ω,F ,P) DCT===⇒ P (An) = E [1An ]→ E [1A] = P (A).

ZBC: Bn =
∞⋂
k=n

Ak ↗ A and Cn =
∞⋃
k=n

Ak ↘ A. By Monotone Convergence of Measures:

lim sup
n→∞

P (An) ≤ lim
n→∞

P (Cn) = P (A) = lim
n→∞

P (Bn) ≤ lim inf
n→∞

P (An) so all are equal.
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1.3 Day 3: Random Variables

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:
Measurable Function h : (X,Σ)→(R,B) measurable if

f−1(B) := {ω ∈ Ω : f(ω) ∈ B} ∈ Σ, ∀B ∈ B

Compactification Use R = R ∪ {±∞}

Borel function ] Σ = σ(S) = B(S), S topological

Random Variable X : (Ω,F )→ (R,B) is (F ,B)measurable

σ-algebra generated by rv’s σ(Xi : i ∈ I) = σ
(
{ω ∈ Ω : Xi(ω) ∈ B} : i ∈ I,B ∈ B

)
⊂ F .

Smallest σ−algebra preserving measurability ofXi’s. σ(Xn : n ∈ N) = σ

(⋃
n

σ(Xk : k ≤ n)
)

︸ ︷︷ ︸
π system

Law of a R.V. X : (Ω,F ) → (R,B), P : F → [0, 1], define PX : B → [0, 1] as PX(B) =

P(X−1(B)). CDF uniquely defines PX (argue by uniqueness in π−systems)
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.

MAIN THEOREMS:

Properties of Inverse Map and Measurability .

– h−1(
⋃
αAα) =

⋃
α h
−1(Aα) and h−1(Ac) =

(
h−1(A)

)c
– If B = σ(C), then suffice to check measurability of h−1(G), ∀G ∈ C

Proof: (click)

A = {G ∈ B : f−1(G) ∈ Σ}. C ⊆ A ⊆ B ⇒ B = σ(C) ⊆ σ(A) ⊆ σ(B) = B.

Conclude by showing A is a σ−algebra.

– h : S → R continuous ⇒ h Borel (S topological). Application: take C = π(R).

– h : (R,B)→ (R,B) monotonic ⇒ h measurable.

– h1, h2 : (S,Σ)→ (R,B) measurable ⇒ h1 + h2, h1 · h2, and λh1 (λ ∈ R) measurable.

– h1 : (S1,Σ1) → (S2,Σ2) & h2 : (S2,Σ2) → (S3,Σ3) ⇒ h2 ◦ h1 : (S1,Σ1) → (S3,Σ3)

measurable.

– hn : (S,Σ)→ (R,B) measurable ⇒ inf hn, lim infn hn, lim supn hn (Σ,B) measurable.

– hn:(S,Σ)→(R,B) measurable⇒A := {ω ∈ Ω : limn hn(ω) exists in R}measurable(∈Σ)

Proof: (click)

h+ = lim supn hn, and h− = lim infn hn, so:

A = {h+(x) <∞}
⋂
{h−(x) > −∞}

⋂
{h+(x) = h−(x)}

=
(⋃

n{h+(x) < n}
)⋂ (⋃

n{h−(x) > −n}
)⋂ (

(h+ − h−)−1({0})
)

Can also use a trick: take the union via Q Trick:

CDF F : R→ [0, 1] is a CDF ⇔

? F (−∞) = 0, F (+∞) = 1

? F monotonically increasing (note: so # of discontinuities of f ≤ ℵ0 = |N|)

? F right continuous: lim
t↘t0

F (t) = F (t0) (filled dot • always on right, empty dot ◦ on left)
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Chapter 2

Week 2: Random Variables,

Independence and Integration
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2.1 Day 1: Skorokhod representation. Doob-Dynkin Lemma.

Monotone Class Theorem.

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

σ-algebra Generated by a r.v. Intuition: if event A ∈ σ(X) ⇔ I can decide if A happened or

not based on the result of the experiment I am doing on X.

Observing the value of X(ω) ⇐⇒ observing the value of 1A(ω) ∀A ∈ σ(X)

Observing the values of Xi(ω), i ∈ I ⇐⇒ observing the value of 1A(ω) ∀A ∈ σ(Xi, i ∈ I)

Ex: flip coin, Xi = outcome of ith toss. X1 ∈ σ(X2) but X2 6∈ σ(X1)

d-system S a set, D = collection of subsets of S. D = d-system on S ⇐⇒

(a) S ∈ D

(b) A,B ∈ D: A ⊂ B =⇒ B\A ∈ D

(c) An ∈ D: An ↗ A =⇒ A ∈ D

Dynkinization C = class of subsets of S: d(C) = ∩{all d-systems containing C}.

d(C) = smallest d-system containing C & d(C) ⊂ σ(C)
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MAIN THEOREMS:

Skorokhod Representation Construct r.v. with given CDF F (·).

Note you/computer can generate any r.v. Y by applying F−1
Y to a random U [0, 1] r.v.

Proof: (click)

F : R→ [0, 1] a CDF, (Ω,F ,P) = ([0, 1],B([0, 1]),Leb) (⇒ P(ω ≤ t) = t for t ∈ [0, 1])

X− := inf{z : F (z) ≥ ω} and X+ := inf{z : F (z) > ω}.

Goal: ω ≤ F (c)⇔ X−(ω) ≤ c, F (c) = P(ω ≤ F (c)) = P(X−(ω) ≤ c) = FX−(c).

(∵)z > X−(ω)⇒ F (z) ≥ ω (z > inf, hence can’t be a lower bd on set).

So F (X−(ω)) = limz↘X−(ω) F (z) ≥ ω (right-continuity).

Note P(X+ = X−) = 1 (∵)use: {X− 6= X+}
Trick:
==

⋃
q∈Q{X− < q < X+}.

Handy: σ(Y ) = Y −1(B) := ({ω : Y (ω) ∈ B} ∀B ∈ B)

& π(Y ) = Y −1(π(R)) := ({ω : Y (ω) ≤ x} ∀x ∈ R)

Doob-Dynkin X,Y : (Ω,F )→ (R,B): X is σ(Y )-measurable ⇔ X = f(Y ), f (B,B)-meas.

Note X, {Yi : i ∈ I} : (Ω,F )→ (R,B): X is σ(Yi : i ∈ I)-measurable

⇔ ∃ countable seq (i1, i2, . . . , in, . . .) S.T. X = f(Yi1 , Yi2 , . . . , Yin , . . .), f (B(RN),B)-meas.

Careful! ! I finite: stop at n & use f ∈ Bn. I uncountable: B(RI)�
∏
i∈I B(R) so need

f ∈
∏
i∈I B(R).

Proof: (click)

H := {X : ∃f : (R,B)→ (R,B) bounded, S.T. X = f(Y )}. Goal: H is a Monotone Class.

Step 1: H = V-Space

Step 2: X(ω) = 1 ∈ H

Step 3: Xn ∈ H, 0 ≤ Xn ↗ X & X bdd ⇒ X ∈ H. 1,2,3 ⇒ apply Monotone Class Thm

(∵)Xn = fn(Y ), take f = lim supn fn, show X = f(Y ) (need: argue f measurable, bdd, etc.).

f(Y (ω) = lim supn fn(Y (ω)) = limn fn(Y (ω)) = X(ω), 1st eq from def, 2nd lim ∃, 3rd by assertion.

Step 4: ∀F ∈ σ(Y ), 1F ∈ H.

(∵)σ(Y ) = Y −1(B) ⇒ F ∈ σ(Y )⇒ F = Y −1B, ∃B ∈ B. Show 1F (ω) = 1B(Y (ω)).
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π & d-systems S = set, Σ = collection of subsets S: Σ = σ-algebra ⇔ Σ = π-syst AND d-syst.

Dynkin’s Lemma I = π-system ⇒ d(I) = σ(I)

If a d-system D contains a π-system I: D contains the σ-algebra σ(I) generated by I.

Proof: (click)

Goal: d(I) = π-system (use above prop to conclude).

Let D1 := {A ∈ d(I) : B ∩A ∈ d(I), ∀B ∈ I} & D2 := {A ∈ d(I) : B ∩A ∈ d(I), ∀B ∈ d(I)}

Show: D1 ⊃ I, D1 = d-system ⇒ D1 = d(D1) = d(I) (as D1 ⊂ I by def)

Show: D2 ⊃ I (use D1 = I result), D2 = d-system ⇒ D2 = d(D2) = d(I) (as D2 ⊂ I by def)

⇒ d(I) = π-system.

Monotone-Class P a property, H = {f : S → R : f bdd and satisfying P}, I a π-system.

(?) =



(i) f, g ∈ H, α ∈ R =⇒ f + g & αf ∈ H

(ii) 1S ∈ H (cst function 1)

(iii) 0 ≤ fn ↗ f, fn ∈ H, f bounded =⇒ f ∈ H

(iv) A ∈ I =⇒ 1A ∈ H

THEN: “H satisfies (?) =⇒ g ∈ H, ∀g ∈ σ (I) bounded (g : S → R)”, i.e., bσ(I) ⊂ H .

Idea: approx any bdd funct S→R by an ↗ seq of simple functs (lin. combo of 1 functs)

Note : The natural setup is as follows. Given a property P, we want to verify this is fulfilled

by any bσ(I)-function. We define H as the set of all bσ(I)-functions obeying P, then try to

show (?) is also satisfied to reach to the conclusion.

Proof: (click)

D := {A ∈ σ (I) : 1A ∈ H}. Show D ⊇ I (by def) & D=d-system (use all ?)

⇒ D = d(D) ⊇ d(I) = σ(I). Take gn simple, 0 ≤ gn ↗ g and use ?(i, iii), so g ∈ H.

Uniqueness Lemma S a set, I = π-system on S, Σ = σ(I), µ1, µ2 measures on (S,Σ).

µ1 = µ2 on I(with µ1(S) = µ2(S) <∞) =⇒ µ1 = µ2 on Σ.

Proof: (click)

D = {F ∈ Σ : µ1(F ) = µ2(F )}: Show D = d-system on S, D ⊃ I (by def)

=⇒ D = d(D) ⊃ d(I) = σ(I) = Σ (by Dynkin) =⇒ D = Σ.
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2.2 Day 2: Independence & Borel-Cantelli Lemma

Main Reference(s): − David Williams, Probability With Martingales, 1991 [13] Chap.4

. − Rick Durrett, Probability: Theory and Example, 2010 [5] Sec. 2.3

.

KEYWORDS: Given (Ω,F ,P) triplet

Indep. σ-alg. F1,F2, · · · ⊂ F , if ∀ Ai1 ∈ Fi1 , . . . , Ain ∈ Fin , P(Ai1 ∩ · · ·∩Ain) =
∏n
k=1 P(Aik).

Careful! here done for finite collection; infinite needs continuity argument

Indep. of r.v. X1, X2, . . . ⊥⊥. ⇔ σ(X1), σ(X2), . . . are ⊥⊥.

Indep. of events E1, E2, . . . indep. if σ(1E1), σ(1E2), . . . are ⊥⊥.

Careful! σ(1Ei) = {∅,Ω, Ei, Eci }, so complements also ⊥⊥.

.

MAIN THEOREMS:

Indep. π-sys. ⇒ Indep. σ-alg. I ⊥⊥ J (π-sys.) ⇒ σ(I) ⊥⊥ σ(J ).

Borel-Cantelli 1
∑
n P(An) <∞ =⇒ P(An i.o) := P(lim supn An) = 0

Proof: (click)

P (lim supnAn) ≤ P
(⋃

n≥k An

)
≤
∑∞
k=n P(Ak)→ 0 , as n→∞

Borel-Cantelli 2
∑
n P(An) =∞ & An ⊥⊥ =⇒ P(An i.o) := P(lim supn An) = 1

Proof: (click)

P
(
(lim supnAn)c

)
= P (lim infnAcn) = P

(
∪n≥1 ∩k≥n Ack

)
≤
∞∑
n=1

P
(
∩k≥nAck

)An⊥⊥︷︸︸︷==
∞∑
n=1

∞∏
k=n

P (Ack) =
∞∑
n=1

0

(∵)
∏
k≥n

P(Ack) =
∏
k≥n

(1− P(Ak)) ≤ e−
∑

k≥n
P(Ak)︸ ︷︷ ︸

=e−∞
= 0 since 1− x ≥ e−x ∀x ≥ 0.

Kolmogorov’s Law of Iterated Logarithm X1, X2, . . . i.i.d. r.v.s with E[X] = 0, E[X2] = 1.

Let Sn = X1 +X2 + . . .+Xn. Then:


lim supn→∞ Sn√

2n log logn
= +1, a.s.,

lim infn→∞ Sn√
2n log logn

= −1, a.s.

Note See Section 4.7 for proof when Xn ∼ N (0, 1).
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Strassen’s Law of Iterated Logarithm X1, X2, . . . i.i.d. r.v.s with mean 0 and variance 1. Let

Sn = X1+X2+. . .+Xn and define the linear interpolation St = (t−n)Sn+1+(n+1−t)Sn, ∀t ∈

[n, n+ 1). Define:

?Zn(t, ω) = Snt(ω)√
2n log logn

, ∀t ∈ [0, 1]

?K(ω) = {f : t7→f(t, ω) | ∃ a seq n1(ω), n2(ω)... ∈ N S.T.Zn(t, ω)→f(t, ω) unif in t ∈ [0, 1]}

?K =
{
f : t 7→ f(t, ω) | f ∈ C[0, 1] S.T. f(t) =

∫ t

0
h(s) ds where

∫ 1

0
h(s)2 ds ≤ 1

}

THEN: P(K(ω) = K) = 1, and

 sup{f(1) | f ∈ K} = +1,

inf{f(1) | f ∈ K} = −1.
,

=⇒ Almost all paths have the same limiting shapes.

But {f ∈ K | f(1) = 1} = {f(t) = t} only, big values of S occur when the whole (rescaled to

Z) path looks like the line f(t) = t.

=⇒ Almost all (rescaled) paths Z look i.o. to f(t) = t and i.o. to f(t) = −t.

Durrett 2.3.7/Williams E4.6 {Xn i.i.d }, Sn = X1 + . . .+Xn:

E[|Xi|] =∞ =⇒ P(|Xn| ≥ n i.o. ) = 1 and P
(

limn
Sn
n exists ∈ (−∞,+∞)

)
= 0

So E[|X|] <∞ is necessary for the SLLN

Proof: (click)

First: ∞ = E[|X|] =
∫ +∞

0
P
(
|X| > x

)
dx ≤

∞∑
n=0

P
(
|X| > n

)
& {Xi} i.i.d =⇒ P

(
|Xn| ≥ n i.o.

)
= 1.

Second: Let C = {ω : limn
Sn
n exists ∈ (−∞,+∞)}. GOAL: P(C) = 0.

Sn
n
− Sn+1

n+ 1 = Sn
n(n+ 1) −

Xn+1

n+ 1 ⇒ on C ∩ {ω : |Xn| ≥ n i.o. }: Sn
n(n+ 1) → 0 and |Sn

n
− Sn+1

n+ 1 | >
2
3 i.o. ,

therefore ω /∈ C, hence C ∩ {ω : |Xn| ≥ n i.o. } = ∅. But P
(
|Xn| ≥ n i.o.

)
= 1 =⇒ P(C) = 0.

Random Cesaro Means {Xn ⊥⊥}, c ∈ R, Sn = X1 + . . .+Xn: Xn
a.s.−→ c =⇒ Sn

n

a.s.−→ c.

Proof: (click)

For simplicity, assume that Xn ≥ c. Xn
a.s.−→ c, so for a.e. ω, ∀ε > 0, ∃N(ω), Xn − c ≤ ε, ∀n ≥ N(ω).

Now fix ω ∈ Ω: Sn(ω)
n

= X1(ω) + . . .+XN (ω)
n

+ n−N
n

XN+1(ω) + . . .+Xn(ω)
n−N

, so
Sn(ω)
n

= X1(ω) + . . .+XN (ω)
n

+ n−N
n

(XN+1(ω)− c) + . . .+ (Xn(ω)− c) + (n−N)× c
n−N

, so
Sn(ω)
n
≤ X1(ω) + . . .+XN (ω)

n︸ ︷︷ ︸
→0 as n→∞

+ n−N
n

(n−N)× (c+ ε)
n−N︸ ︷︷ ︸

→c as n→∞

−→ c

Also, Xn ≥ c⇒ Sn ≥ c. Hence limn Sn(ω) = c for almost all ω, i.e., Sn
a.s.−→ c.

We can generalize the proof by looking at c− ε ≤ Xn ≤ c+ ε when n ≥ N(ω).
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EXERCISES:
Exercise:

Let Xn be nonnegative r.v.s (not necessarily independent) S.T. 0 < P(Xn ≥ B) ≤ 1
B2 , ∀ B ≥ 0, ∀ n.

(a) Fix some B > 0. Show that P
(

lim sup
n→∞

Xn

n
≥ B

)
= 0.

(b) Show that, with probability 1, limn→∞(Xn/n) exists and is equal to zero.

Solution: (click)

(a) We have

P
(
Xn

n
≥ B

2

)
= P

(
Xn ≥ n

B

2

)
≤ 4
B2n2 , ∀n.

Therefore,
∞∑
n=1

P
(
Xn

n
≥ B

2

)
≤
∞∑
n=1

4
B2n2 <∞.

By the BC Lemma, the event {Xn/n ≥ B/2} can only happen a finite number of times (w.p. 1), so

P
(

lim sup
n→∞

Xn

n
>
B

2

)
= 0.

The strict inequality is crucial here: e.g., Xn
n = B

2 −
1
n =⇒ lim supn Xn

n = B
2 , therefore

P(lim supn→∞ Xn
n > B

2 ) = P(lim supn→∞ B
2 > B

2 ) = 0 would fail for “≤”.

Since 0 ≤ P
(

lim supn→∞ Xn
n ≥ B

)
≤ P

(
lim supn→∞ Xn

n > B
2

)
= 0, we get P

(
lim sup
n→∞

Xn

n
≥ B

)
= 0.

(b) We define Ak =
{
ω : lim sup

n→∞

Xn(ω)
n

≤ 1
k

}
:

Since Xn are nonnegative, we observe that

A =
∞⋂
k=1

Ak =
{
ω : lim

n→∞

Xn(ω)
n

= 0
}
.

Using the result from part (a), we have

P(Ack) = P

({
ω : lim sup

n→∞

Xn(ω)
n

>
1
k

})
= 0, ∀k.

Therefore,

P(Ac) = P
( ∞⋃
k=1

Ack
)
≤
∞∑
k=1

P(Ack) = 0 =⇒ P(A) = 1.
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Exercise:
Let An be a sequence of independent events with P(An) < 1 for all n, and P(∪nAn) = 1.

(a) Show that P(An i.o.) = 1.

(b) Give an example to show that the conclusion of part (a) does not necessarily hold if we remove the

assumption that P(An) < 1 for all n.

Solution: (click)

We are given that

P
(
(∪nAn)c

)
= 0,

or

P(∩nAcn) = 0.

Using the multiplication theorem (part (e) of Theorem 1 in the notes for Lecture 3), and independence, we

conclude that ∏
n

(1− P(An)) = 0.

We will then use the following fact.

Claim: if a sequence {xi}, with 0 ≤ xi < 1, satisfies
∏
i(1− xi) = 0 xi in [0, 1), then

∑
i xi =∞.

Proof of the claim: We can assume that after some integer N , every xi is below 1/2; else, the conclusion

follows trivially. Note that for every x ∈ [0, 1/2], we have log(1− x) ≥ −2x. To see this, observe that both

the left-hand and right-hand side are 0 at y = 0, but the right-hand side has a smaller derivative throughout

[0, 1/2].

Since
∏∞
i=N (1− xi) = 0, we take logarithms to obtain

∞∑
i=N
−2xi ≤

∞∑
i=N

log(1− xi) = −∞,

which establishes the claimed result.

Now we apply the above claim to obtain ∑
n

P(An) =∞.

Using the Borel-Cantelli lemma, we conclude that An occurs infinitely often, with probability 1.

For part (b), consider the sequence of events where A1 = Ω, and An is empty for n > 1. We have

P(∪nAn) = 1, and the events are independent. However, P(An i.o.) = 0.
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Exercise:
(Durrett [5] 2.3.13) Let {Xn} be a sequence of independent random variables. Show that supnXn =∞,

a.s., if and only if
∑∞
n=1 P(Xn > c) <∞ for some c.

Remark: The problem indicates that Xi are random variables (as opposed to extended-valued random

variables), which means that their range is the real numbers. On the other hand, we can’t say the same

about supiXi, since it can take the value of +∞.

Solution: (click)

Suppose
∑∞
n=1 P(Xn > c) =∞ for all c. For any c, the probability of supiXi < c must be 0 since the event

Xi > c occurs infinitely often with probability 1 by the Borel-Cantelli lemma. It follows that

P
(

sup
i
Xi <∞

)
= P

 ∞⋃
n=0

{
sup
i
Xi < n

}
≤
∑
n

P
(

sup
i
Xi < n

)
≤
∑
n

0 = 0

so supiXi must equal +∞ with probability 1.

Suppose that for some c,
∑∞
n=1 P(Xn > c) < ∞. By the Borel-Cantelli lemma, this means that with

probability 1, the number of times Xi > c is finite. If Xi > c occurs finitely many times, then supiXi is

finite, and it follows that supiXi is finite with probability 1.

Exercise:
Let Xn be independent, identically distributed (i.i.d.) random variables, defined on the same probability

space. Each Xn is exponentially distributed that are exponentially distributed, with PDF fX(x) = e−x,

x ≥ 0, so that P(X ≥ x) = e−x, for all x ≥ 0. Let c be a positive constant, and consider the event A that

“Xn ≥ c logn for infinitely many values of n.”

Find a necessary and sufficient condition on c for P(A) to be equal to 1.

Solution: (click)

First, note that if Xn has PDF fX(x) = e−x, its CDF is FX(x) = 1− e−x and P(Xn ≥ x) = e−x. Defining

An = {Xn ≥ c logn}, a necessary and sufficient condition for the statement “An occurs infinitely often” is, by

independence of An and the second Borel-Cantelli lemma,
∞∑
n=1

P(An) =∞. However, P(An) = e−c logn = 1
nc
.

Therefore the series
∞∑
n=1

P(An) =
∞∑
n=1

1
nc

diverges if and only if c ≤ 1.
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Exercise:
Let X be a nonnegative r.v., with E[X] < ∞. Let A1, A2, . . . be an arbitrary sequence of events such that

P(An) ≤ 2−n, for every n, and let In be the indicator r.v. of An. Show that limn→∞ E[X1n] = 0.

Solution: (click)

We have that
∑∞
n=1 P(An) < ∞. By the BC lemma, and w.p. 1, only finitely many of the events An will

occur. In particular, the seq. of r.v.s 1n converges to 0 a.s. It follows that X1n also converges to 0 a.s. The

r.v.s X1n are bounded above by the integrable r.v. X. Conclude with the dominated convergence thm.

Exercise:
(Durrett [5] 2.3.11) Suppose that the events An satisfy P(An)→ 0 and

∑∞
n=1 P(Acn ∩An+1) <∞.

Show that P(An i.o.) = 0.

Solution: (click)

Define the set

A = lim sup
n→∞

An =
∞⋂
n=1

∞⋃
m=n

Am.

We wish to show P(A) = 0. Now, A ⊆ ∪∞m=nAm for all m, and by monotonicity of the measure, P(A) ≤

P(∪∞m=nAm), for all n. In addition,

∞⋃
m=n

Am = An ∪ (An+1 \An) ∪ (An+2 \An+1) ∪ · · ·

= An ∪ (An+1 ∩Acn) ∪ (An+2 ∩Acn+1) ∪ · · · ,

and these are disjoint sets. Therefore by the union bound, and countable additivity,

P(A) ≤ P
( ∞⋃
m=n

Am

)
= P(An) +

∞∑
m=n

P(Am+1 ∩Acn).

This holds for all n, and therefore it holds in the limit as n goes to infinity. But the limit of the final

expression is zero, since P(An)→ 0, and since
∑∞
n=1 P(Acn ∩An+1) <∞.

Second solution outline We observe that if An occurs infinitely often, then either (a) Acn ∩ An+1 oc-

curs infinitely often, or (b) there is some k such that An occurs for every n ≥ k. Alternative (a) has zero

probability (by applying the Borel-Cantelli Lemma to the sequence Acn ∩An+1. Alternative (b) is the event

∪∞k=1Bk, where Bk = ∩∞n≥kAn. Note that P(Bk) ≤ P(Am) for every m ≥ k. Since P(An) → 0, it follows

that P(Bk) = 0 for every k, from which it follows (using the union bound) that P(∪∞k=1Bk) = 0.
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Exercise:
(Williams [13] p.41) Let {Xn} be a sequence of i.i.d Exp(1) r.v.s: then P(Xn > x) = e−x, x ≥ 0.

Show that: P (Xn > α logn for infinitely many n) =

 0, if α > 1,

1, if α ≤ 1.
and lim sup

n→∞

Xn

logn = 1 a.s.

Note Similarly, we can prove that:

P (Xn > logn+ α log logn, i.o.) =

 0, if α > 1,

1, if α ≤ 1.
and

P (Xn > logn+ log logn+ α log log logn, i.o.) =

 0, if α > 1,

1, if α ≤ 1.
etc.

Solution: (click)

P(Xn > x) = e−x, x ≥ 0 implies that P(Xn > α logn) = n−α, for α > 0. Therefore:
∞∑
n=1

P(Xn > α logn) =
∞∑
n=1

n−α :

 <∞, if α > 1 ⇒ apply BC. 1,

=∞, if α ≤ 1 (+ ⊥⊥)⇒ apply BC. 2.
, as desired Now

P
(

lim sup
n→∞

Xn

logn ≥ 1
)
≥ P (Xn > logn, i.o.) = 1 =⇒ P

(
lim sup
n→∞

Xn

logn ≥ 1
)

= 1. We now show that

it is actually equal to 1: ∀k ∈ N, P
(

lim sup
n→∞

Xn

logn > 1 + 2
k

)
≤ P

(
Xn >

(
1 + 1

k

)
logn, i.o.

)
= 0.

⇒ P
(

lim sup
n→∞

Xn

logn > 1
)

= P

 ∞⋃
k=1

{
lim sup
n→∞

Xn

logn > 1 + 2
k

} ≤ ∞∑
k=1

P
(

lim sup
n→∞

Xn

logn > 1 + 2
k

)
= 0

⇒ P
(

lim sup
n→∞

Xn

logn = 1
)

= 1 =⇒ lim sup
n→∞

Xn

logn = 1 a.s.

The higher order approximations are obtained in a similar way.

Exercise:

(Williams [13] E4.7) Let {Xn ⊥⊥}∞n=1 S.T. Xn =

 n2 − 1, w.p. 1
n2 ,

−1, w.p. 1− 1
n2 .

Show that E[Xn] = 0 & Sn = X1 +X2 + · · ·+Xn

n

a.s.−→ −1

Note In the absence of identicality of distribution, SLLN does not hold.

Solution: (click)∑∞
n=1 P(Xn > −1) =

∑∞
n=1

1
n2 < ∞. By BC. 1, P(Xn > −1 i.o.) = 0 ⇒ For a.e. ω, ∃N(ω), Xn ≤

−1, ∀n ≥ N(ω) So Xn(ω) = −1, ∀n ≥ N(ω) and Xn
a.s.−→ −1. Now: Sn(ω) = X1(ω) + . . .+XN (ω)

n
+

n−N
n

XN+1(ω) + . . .+Xn(ω)
n−N

, so Sn(ω) = X1(ω) + . . .+XN (ω)
n︸ ︷︷ ︸

→0 as n→∞

+ n−N
n

−1× (n−N)
n−N︸ ︷︷ ︸

→−1 as n→∞
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.

Book Exercises:
Williams [13]: Appendix E4: 2, 5, 6, 7.

Grimmett [7]: Chapter 1: 2.3, 3.7, 5.3, 8.3, 8.8, 8.16.

Chapter 2: 2.2, 7.2, 7.11, 7.13.

Durrett [5]: Section 2.3 (Solution Chap 6 - same problem # unless otherwise specified):

8 (6.4), 9 (6.5), 10, 14, 15, 16, 17, 18, 19, 20.

Folland [6]: Chapter 10.2: 14, 15.
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2.3 Day 3: Kolmogorov’s 0-1 Law

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Tail σ-algebra Xn ⊥⊥, define τn := σ(Xn, Xn+1, . . . ). Then τ :=
∞⋂
n=1

τn.

Tail event Any F ∈ τ (above) is a tail event.

Example:

? F1 := {ω ∈ Ω : limnXn(ω) exists} ∈ τ .

(∵)F1 = {ω ∈ Ω : limkXn+k exists} ∈ τn (∀n) ⇒ F1 ∈
⋂
n τn = τ .

? F2 := {ω ∈ Ω :
∑
n≥1Xn(ω) converges} ∈ τ .

(∵)Note F2 = {ω ∈ Ω :
∑
k≥nXk(ω) converges} ∈ τn (∀n) ⇒ F2 ∈

⋂
n τn = τ .

? F3 := {ω ∈ Ω : limk
X1 + · · ·+Xk

k
exists} ∈ τ .

(∵)F3 = {ω ∈ Ω : limk
Xn+1 + · · ·+Xn+k

k
exists} ∈ τn (∀n) ⇒ F3 ∈

⋂
n τn = τ .

Careful! F , Gn a σ-algebra, Gn decreasing:
⋂
n

σ(F ,Gn) ?= σ

(
F ,
⋂
n

Gn

)
... Not in general!

Deciding when it is true is “a tantalizing problem”!

Example: Xn := Y0Y1...Yn, where {Yn ⊥⊥} & Yn = ±1, w.p. 1
2 . Let Y = σ(Y1, Y2, . . .) and

τn = σ(Xk : k > n). Then {Xn ⊥⊥} and
⋂
n

σ(Y , τn) 6= σ

(
Y ,
⋂
n

τn

)
.

(∵)Y0 ∈
⋂
n

σ(Y , τn) but Y0 ⊥⊥ σ
(
Y ,
⋂
n τn

)
.

MAIN THEOREMS:

Kolmogorov’s 0-1 Law Let τ be the tail σ-algebra of {Xn ⊥⊥}. Then:

(a) ∀F ∈ τ (above) =⇒ P(F ) = 0 or 1.

(b) ∀ r.v. X τ -measurable (above) =⇒ P(X = c) = 1 (X = c a.s.) for some c ∈ [−∞,+∞].

Note We say that τ is “P-trivial”.

Corollary: {Xn ⊥⊥} =⇒ P
(∑

nXn converges
)

= 0 or 1. Which one ? See “3-Series Thm”
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Proof: (click)

Proof outline of (a):

1. Xn = σ(X1, . . . , Xn) ⊥⊥ τn = σ(Xn+1, . . . ). (∵)Use π-systems: K = {ω : Xi(ω) ≤ xi, 1 ≤ i ≤ n, xi ∈ R)}

and J = {ω : Xj(ω) ≤ xj , n+ 1 ≤ j ≤ n+ r, xj ∈ R, r ∈ N)}

2. Xn ⊥⊥
⋂
n τn (∵)τ ⊂ τn

3. X∞ := σ(Xn : n ∈ N): X∞ ⊥⊥ τ (∵)K∞ := ∪∞n=1Xn is a π-system generating X∞, K∞ ⊥⊥ τ , so X∞ ⊥⊥ X∞.

4. τ ⊂ X∞ =⇒ τ ⊥⊥ τ ⇒ ∀F ∈ τ : P (F ) = P (F ∩ F ) = P (F )P (F ) = 0 or 1

Proof outline of (b):

c := sup{x : P (X ≤ x) = 0}. Apply (a): P (X ≤ x) = 0, 1, ∀x.

Take cn = c− 1
n , get P (X < c) = 0. Take cn = c+ 1

n , get P (X ≤ c) = 1.

Exercise:
Prove that F1 := {ω ∈ Ω : limnXn(ω) exists} ∈ τ .

Solution: (click)

Recall that {Xn(ω)}∞n=1 converges ⇐⇒ {Xn(ω)}∞n=1 Cauchy. Hence, ∀ε > 0,∃N ∈ N≥k s.t. n,m ≥ N

⇒ |Xn(ω) − Xm(ω)| < ε (∀k ∈ N). Thus, F1 =
⋂
ε>0

⋃
N≥k

⋂
n,m≥N

{ω ∈ Ω : |Xn(ω) − Xm(ω)| < ε}. Since

{ω ∈ Ω : |Xn(ω)−Xm(ω)| < ε} = (Xn −Xm)−1 ((−ε, ε)) ∈ τk, and we take countable intersections/unions

etc., F1 ∈ τk,∀k ⇒ F1 ∈ ∩kτk = τ . To approximate ε’s with a countable collection, consider 1
l , l ∈ N.
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2.4 Day 4: Integration

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS: (Ω,F , µ) measure space. Assume 0×∞ := 0.

Notation µ(f) :=
∫

Ω f(ω) µ(dω) =
∫

Ω f dµ.

µ(f ;A) := µ(f1A) :=
∫
A
f(ω) µ(dω) =

∫
A
f dµ for A ∈ F .

Note Sum is a special kind of integral: the integral’s form is tailored to the measure used.

Positive Simple Functions (SF+) ∃n ∈ N S.T. f =
∑n
k=1 ak1Ek (Ek ∈ F , ak ≥ 0)

Canonical rep: ak’s distinct. All reps give same results.

Integral of an SF µ(1A) := µ(A) ≤ ∞ (A ∈ F ) .

Integral of a Positive Function µ(f) =
∫

Ω
f dµ :=1 sup

0≤g≤f
g∈SF+

∫
Ω
g dµ ≤ ∞

Note µ(f) = supg∈SF+

∑
a∈Range(g)

aµ({ω : g(ω) = a})

Positive/Negative Part f meas: f = f+ − f− with f+ = max(f, 0) & f− = max(−f, 0)

Note f+, f− ∈ SF+ and |f | = f+ + f−

Integrable Function f ∈ L1(S,Σ, µ) if µ(|f |) = µ(f+) + µ(f−) <∞

Integral of Integrable Functions f ∈ L1:
∫
f dµ :=

∫
f+ dµ−

∫
f− dµ

Note f ∈ L1: |µ(f)| ≤ µ(|f |)

.

MAIN THEOREMS:

SF+ Properties Let f, g ∈ SF+ and a, b ∈ [0,∞]

(a) µ(f) =
∑n
k=1 akµ(Ak) ≤ ∞

(b) f = g µ-a.e2 ⇒ µ(f) = µ(g).

(c) (Linearity) af + bg ∈ SF+ and µ(af + bg) = aµ(f) + bµ(g).

(d) (Monotonicity) 0 ≤ f ≤ g a.e. ⇒ µ(f) ≤ µ(g).

(e) (Max-Min) max{f, g} & min{f, g} ∈ SF+.
1Reasonable def as SF+ approx works.
2Specification of µ: µ

(
{ω ∈ Ω : f(ω) 6= g(ω)}

)
= 0.

30



Null f ≥ 0 measurable: µ(f) = 0 ⇒ f = 0 a.e.

(∵)An = {ω : f(ω) ≥ 1
n}: µ(f) ≥ µ(f ;An) ≥ nµ(An) ⇒ nµ(f) ≥ µ(An) ⇒ µ(A) = 0.

{ω : f(ω) > 0} =
⋃
n

An

SF+ Approximation f ≥ 0 measurable =⇒ ∃ a seq. ϕn ∈ SF+ S.T. 0 ≤ ϕn ↗ f .

(∵)Take ϕn =
n2n∑
k=1

k − 1
2n 1{ω: k−1

2n ≤f(ω)< k
2n } + n1{ω:f(ω)≥n}

3

Monotone Convergence Thm (MCT) fn, f meas: 0 ≤ fn ↗ f =⇒ µ(fn)↗ µ(f) ≤ ∞.

Proof: (click)

[f ≥ limµ(fn)] µ(f1) ≤ µ(f2) ≤ . . . (monotonicity) ⇒ limn→∞ µ(fn) existsa⇒ f ≥ limn µ(fn).

[f ≤ limµ(fn)] g ∈ SF+, g ≤ f . Fix c ∈ (0, 1), let An := {ω : fn(ω) ≥ cg(ω)}.

So An ↗ Ω and µ(fn) ≥ µ(fn;An) ≥ cµ(g;An) ⇒ limn µ(fn) ≥ cµ(g) ⇒ limn µ(fn) ≥ µ(g)

⇒ limn µ(fn) ≥ supg∈SF+:0≤g≤f µ(g) = µ(f).
aMonotonic sequences of real numbers have limits.

Exercise:
Breaking Monotone Convergence:

Consider the sequence of Borel measurable functions gn : [0, 1]→ R, defined by gn(x) = − 1
nxI{x>0}.

1. lim
n→∞

1∫
0
gn(x)dx = lim

n→∞
(−∞).

2. lim
n→∞

gn(x) = 0 for all x ∈ [0, 1] and thus
1∫
0

lim
n→∞

gn(x)dx = 0.

We have a monotone seq. of functions, BUT the condition
1∫
0
|g1(x)|I{ω:g1(ω)<0}(x)dx <∞ fails.

Furthermore, fails hypotheses of the DCT: supn |gn| = 1
xI{x>0} is not integrable.

Corollary: Also holds with a.e. : fn ↗ f a.e. then =⇒ µ(fn)↗ µ(f) ≤ ∞.

(∵)Let N = {ω : fn 6→f} (µ(N) = 0): gn = fn1Nc & g = f1Nc . Apply MCT (use
∫

Ω =
∫
Nc

)

Corollary: If µ(A) = 0 then
∫
A
f dµ = 0 ∀f meas.

(∵)True if SF+ (
∫
A
1E dµ =

∫
Ω 1E∩A dµ = µ(E ∩A) ≤ 0)

Corollary: On ([0, 1],B([0, 1]), Leb): f Riemann-integ ⇒ f Leb. meas. and Leb. integ.

(∵)See Stein p.57 Thm 1.5

SF+ Integr Approx f ≥ 0 meas. ⇒∃ a seq ϕn ∈ SF+ S.T. 0 ≤ ϕn ↗ f & µ(ϕn) ↗ µ(f).

(∵)MCT

a.e. Equality f = g ≥ 0 µ-a.e =⇒ µ(f) = µ(g). (∵)MCT
3Basically, threshold y-axis at n, then discretize with step size 1

2n .
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Fatou’s Lemmata 4 f : (S,Σ)→ (R,B), g ∈ L1 (i.e., µ(g) <∞) .

1. fn ≥ g a.e. meas =⇒ µ(lim inf fn) ≤ lim inf µ(fn)

2. fn ≤ g a.e. meas: =⇒ µ(lim sup fn) ≥ lim supµ(fn)

Note Fatou =⇒ MCT: (∵)0 ≤ fn ↗ f a.e. (so lim sup = lim inf = lim), g = 0:

Fatou ⇒
∫
f dµ =

∫
lim fn dµ ≤ lim

∫
fn dµ

But fn ≤ f a.e. =⇒
∫
f dµ =

∫
lim fn dµ ≥ lim

∫
fn dµ

Proof: (click)

1. gk = infn≥k fn ↗ lim infn fn ⇒ MCT: µ(gk)↗ µ(lim infn fn).

Now: µ(gk) ≤ µ(fn) ∀n ≥ k ⇒ µ(gk) ≤ infn≥k µ(fn) ⇒ limk µ(gk) ≤ limk infn≥k µ(fn) = lim inf µ(fn)

2. Apply (1.) for (g − fn)

Exercise:
Breaking Fatou’s Lemma:(strict inequalities can happen)

Consider the seq. of Borel meas. functions fn : [0, 1]→ R, defined by fn =

 1[0,1/2], if n odd,

1[1/2,1], if n even.
Then lim supn fn = 1[0,1] and lim infn fn = 0

=⇒
∫

lim inf fn = 0 < 1
2 = lim inf

∫
fn and

∫
lim sup fn = 1 > 1

2 = lim sup
∫
fn

Linearity f, g ∈ L1(S,Σ, µ): (af + bg) ∈ L1 and µ(af + bg) = aµ(f) + bµ(g) ∀a, b,∈ R

Dominated Conv. Thm (DCT) fn, f meas, fn → f a.e. and ∃g ∈ L1 S.T. |fn| ≤ g a.s.

=⇒ fn → f ∈ L1 i.e., µ(|fn − f |)→ 0 =⇒ µ(fn)→ µ(f)

Corollary: Bounded Convergence Thm (BCT)

fn, f meas, fn → f a.s. and ∃c ≥ 0 S.T. |fn| ≤ c a.e. =⇒ µ(fn)→ µ(f)

Proof: (click)

|fn − f | ≤ 2g ∈ L1 =⇒ Fatou: 0 ≤ lim inf µ(|fn − f |) ≤ lim supµ(|fn − f |) ≤ µ(lim sup |fn − f |) = µ(0) = 0

=⇒ limµ(|fn − f |) = 0 =⇒ |µ(fn)− µ(f)| = |µ(fn − f)| ≤ µ(|fn − f |)→ 0.

4Greek Plural ,
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Exercise:
Breaking Dominated Convergence:

Consider the sequence of Borel measurable functions gn : [0, 1]→ R, defined by gn(x) = n.I(0, 1
n ).

1. lim
n→∞

∫
R
gn(x)dx = 1.

2. lim
n→∞

gn(x) = 0 for all x ∈ R and thus
∫
R

lim
n→∞

gn(x)dx = 0.

In this case, the smallest upper bound (the supremum) for |gn| is not integrable because
1∫

0

sup
n
{|gn(x)|}dx =

∞∑
n=1

n

(
1
n
− 1
n+ 1

)
=
∞∑
n=1

1
n+ 1 =∞,

so the condition about the existence of an integrable function that dominates the seq. fails to hold.

Exercise:

Show that:
∞∑
n=1

E[|Zn|] <∞ =⇒
∞∑
n=1

E[Zn] = E

 ∞∑
n=1

Zn

,

i.e.,
∞∑
n=1

∫
|fn| dµ <∞ =⇒

∞∑
n=1

∫
fn dµ =

∫  ∞∑
n=1

fn

 dµ

Solution: (click)

(?) Let Y :=
∞∑
k=1

E[|Zk|] and Yn :=
n∑
k=1

E[|Zk|] ⇒ MCT: E

 ∞∑
i=1
|Zn|

 =
∞∑
i=1
E[|Zn|] = E[Y ] <∞

=⇒ E[Y ] <∞.

(?) Now let X :=
∞∑
k=1

E[Zk] and Xn :=
n∑
k=1

E[Zk]: |Xn| ≤ Yn ≤ Y, ∀n ∈ N

⇒ DCT: E[Xn]→ E[limnXn] = E[X] (since by def, limnXn = X)

Scheffe’s Lemma fn, f ∈ L1: fn → f a.s. =⇒ “µ(|fn − f |)→ 0⇐⇒ µ(|fn|)→ µ(|f |)”

Proof: (click)

(⇒) | |fn| − |f | |≤ |fn − f | → 0 so µ(||fn| − |f ||) ≤ |µ(|fn − f |)| → 0

(⇐) For simplicity, assume fn, f ≥ 0.

Use µ(fn)→ µ(f) to show µ(|fn − f |) = µ((fn − f)+) + µ((fn − f)−)→ 0

1. (fn − f)− = max(f − fn, 0) ≤︸︷︷︸
fn≥0

max(f, 0) ≤︸︷︷︸
f≥0

f ∈ L1, fn → f a.s. =⇒ DCT: µ((fn − f)−)→ 0

2. µ((fn − f)+) = µ(max(fn − f, 0)) = µ(fn − f)− µ(fn − f ; fn < f) = µ(fn)− µ(f) + µ((fn − f)−)→ 0

Note General case: Fatou ⇒ µ(f±n )→ µ(f±) and apply the special case above.
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2.5 Day 5: Radon-Nikodym

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Standard Machine To prove a “linear result” ∀f ∈ L1 , take following steps:

(?) Prove result for f = 1E , E ∈ Σ.

(?) Use linearity to prove for f ∈ SF+

(?) Use MCT to prove for f ∈ (mΣ)+

(?) Decompose f ∈ L1 as f = f+ − f− and use linearity.

Note Equivalent to using Monotone Class Theorem

Absolute Continuity ν � µ if µ(A) = 0⇒ ν(A) = 0.

.

MAIN THEOREMS:

Lemma f : Ω→ R≥0 meas., ν(A) :=
∫
A
f dµ. Then, ν(·) measure on (Ω,Σ) and ν � µ. f := dν

dµ .

Proof: (click)

Ai∈Σ disj: ν (∪iAi) =
∫
∪iAi

f dµ = lim
n

∫
1∪n

i=1Ai
f dµ = lim

n

n∑
i=1

∫
Ai

f dµ = lim
n

n∑
i=1

ν(Ai) =
∑
i

ν(Ai)

Radon-Nikodym ν, µ on (Ω,Σ) S.T. ν � µ. Then, ∃f : Ω→ R≥0 S.T. ν(A) =
∫
A
f dµ, ∀A ∈ Σ.

Chain Rule ∀g : Ω→ R≥0 meas.,
∫
g dν =

∫
gf dµ (f def. above). Why chain5 ?

Proof: (click)

(?) For g ∈ SF+: g =
∑n
i=1 ai1Ei (canonical rep.) ⇒

∫
g dν =

∫ ∑n
i=1 ai1Eidν =

∑n
i=1
∫
ai1Eidν

So:
∫
g dν =

∑n
i=1 aiν(Ei) =

∑n
i=1 ai

∫
1Eif dµ =

∫ (∑n
i=1 ai1Ei

)
f dµ =

∫
gf dµ.

(?) For g ∈ (mΣ)+, take gn ∈ SF+ S.T. 0 ≤ gn ↗ g. Therefore:∫
g dν ==︸︷︷︸

MCT

limn

∫
gn dν ==︸︷︷︸

above

limn

∫
gnf dµ ==︸︷︷︸

MCT

limn gf dµ, as 0 ≤ (gnf)↗ (gf)

Lebesgue’s Thm g : R→ R is Riemann integrable ⇔ g is continuous λ- a.e.
5
∫
g dν =

∫
g dν
dµ

dµ =
∫
gf dµ.
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Summary: .

Measure Theory: Probability:∫
1A dµ = µ(A) E[1A] = P (A)

g ≥ 0 =⇒
∫
g dµ ≥ 0 X ≥ 0 =⇒ E[X] ≥ 0

g = 0 a.e. =⇒
∫
g dµ ≥ 0 X = 0 a.s. =⇒ E[X] = 0

g ≤ h a.e. =⇒
∫
g dµ ≤

∫
h dµ X ≤ Y a.s. =⇒ E[X] ≤ E[Y ]

g = h a.e. =⇒
∫
g dµ =

∫
h dµ X = Y a.s. =⇒ E[X] = E[Y ]

g ≥ 0 a.e. :
∫
g dµ = 0 =⇒ g = 0 a.e. X ≥ 0 a.s. : E[X] = 0 =⇒ Z = 0 a.s.∫

(g + h) dµ =
∫
g dµ+

∫
h dµ E[X + Y ] = E[X] + E[Y ]∫

αg dµ = α
∫
g dµ E[αX] = αE[X]

MCT: 0 ≤ gn ↗ g a.e. =⇒
∫
gn dµ↗

∫
g dµ MCT: 0 ≤ Xn ↗ X a.s. =⇒ E[Xn]↗ E[X]

DCT: gn → g a.e. , |gn| ≤ h ∈ L1 a.e. ⇒
∫
gn dµ→

∫
g dµ DCT: Xn → X a.s. , |Xn| ≤ Y a.s. , E[|Y |] <∞ =⇒ E[Xn]→ E[X]

BCT: |gn| ≤ c a.e. , gn → g a.e. ⇒
∫
gn dµ→

∫
g dµ BCT: |Xn| ≤ c a.s. Xn → X a.s. =⇒ E[|Xn −X|]→ 0, E[Xn]→ E[X]

Scheffe: fn→f a.s. ∈ L1:µ(|fn − f |)→ 0⇔µ(|fn|)→µ(|f |) Scheffe: Xn → X a.s. , E[|Xn|]→ E[|X|] =⇒ E[|Xn −X|]→ 0

g ≥ 0 =⇒ ν(A) =
∫
A
g dµ is a measure f ≥ 0:

∫
f dP = 1 =⇒ ν(A) =

∫
A
f dP is a prob. measure

RN: ν � µ ⇒ ∃f : Ω→ R≥0 S.T. ν(A) =
∫
A
f dµ, ∀A ∈ Σ RN: P2 � P1 ⇒ ∃Y : Ω→ R≥0 S.T. P2(A) = EP1 [Y 1A] =

∫
A
Y dP1
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Chapter 3

Week 3: Expectation, Law of

Large Numbers & Applications
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3.1 Day 1: Expectation

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS: (Ω,F ,P) a Probability Space, Lp = Lp(Ω,F ,P).

Notation P(X) =
∫
X dP; E[X;F ] = E[X1F ] =

∫
F
X dP, ∀F ∈ F .

Expectation X s.t. X+ or X− ∈ L1: E[X] =
∫
X dP =

∫
X+ dP−

∫
X− dP (avoid ∞−∞)

Note E[X] =
∫ ∞

0
(1−FX(x)) dx−

∫ 0

−∞
FX(x) dx =

∫ ∞
0
P(X > x) dx−

∫ 0

−∞
P(X < x) dx.

Integral ∃ as P(X > x) Riemann integ. (monotonic ⇒ µ(discont.) = 0, bdd.)

Trick:
∞∑
k=1
P
(
|X| > k

)
≤
∫ ∞

0
P
(
|X| > x

)
dx≤

∞∑
k=0

P
(
|X| > k

)
, soX ∈ L1 ⇔

∞∑
k=1

P
(
|X| > k

)
<∞

Convex Function g : I → R s.t. g
(
λx+ (1− λ)y

)
≤ λg(x) + (1− λ)g(y) ∀λ ∈ [0, 1]

Note g convex =⇒ g continuous on I. Also if g twice differentiable: g convex ⇐⇒ g′′ ≥ 0.

Lp Spaces p ∈ [1,∞): X ∈ Lp if E[|X|p] <∞; ‖X‖p :=
(
E[|X|p]

) 1
p ; Lp is a V-Space1.

Truncation |X| ∈ mF , Xn := min{|X|, n} = X ∧ n =⇒ Xn ∈ Lp,∀p ≥ 1, & 0 ≤ Xn ↗ |X|.

.

MAIN THEOREMS:

Moments Calculation E[|X|p] =
∫ ∞

0
pxp−1P

(
|X| > x

)
dx

Proof: (click)∫ ∞
0

pxp−1P
(
|X| > x

)
dx=

∫ ∞
0

∫
Ω
pxp−1

1|X(ω)|>x dP(ω) dx=
∫

Ω

∫ |X(ω)|

0
pxp−1 dxdP(ω)=

∫
Ω
|X|p dP(ω)

Markov’s Inequality Z ∈ mF , g : (R,B)→ ([0,∞],B) increasing: g(c)P (Z ≥ c) ≤ E[g(Z)]

Proof: (click)

E[g(Z)] ≥ E[g(c)1Z≥c] = g(c) · P (Z ≥ c)

Chernoff Inequality Y a r.v.: P (Y > c) ≤ e−θcE[eθY ] ∀θ > 0, c ∈ R (optimize over θ > 0)2.
1X,Y ∈ Lp, |X + Y |p ≤ (|X|+ |Y |)p ≤ 2p max{|X|p, |Y |p} ≤ 2p(|X|p + |Y |p). Take integral and conclude.
2Proven by taking g : t 7→ eθt. One can consider the ’best’ g(·) too, namely P (Z ≥ c) ≤ inf

g∈S

E[g(Z)]
g(c)

, S is some

function space. Even more curiously, consider the gap
∣∣E[g(Z)]− g(c)P (Z ≥ c)

∣∣. How small can we make it, namely
inf
c∈R

inf
g∈S

∣∣E[g(Z)]− g(c)P (Z ≥ c)
∣∣.
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Chebyshev’s Inequality X ∈ L2: P
(
|X − E[X]| > c

)
≤ Var(X)

c2 , ∀c ≥ 0

Sum of r.v.s .

? E[X] <∞ =⇒ X <∞ a.s.

? Zk ≥ 0: E[
∑
Zk] =

∑
(E[Zk]) ≤ ∞

?
∑
E[|Zk|] <∞ =⇒ Zk → 0, a.s. .

?
∑∞
n=1 E[|Zn|] <∞ =⇒

∑∞
n=1 E[Zn] = E

[∑∞
n=1 Zn

]
.

Exercise:
(Alternative Pf.) If

∑
k P (Ek) < ∞: Zk = 1Ek ⇒

∑
k E[Zk] < ∞ ⇒ Zk → 0, a.s. ⇒ Zk = 0

eventually w.p. 1 (as Zk ∈ {0, 1})

Jensen’s Inequality g : I → R cvx., I open; X, g(X) ∈ L1(Ω,F ,P) ⇒ E[g(X)] ≥ g(E[X]).

Proof: (click)

(Kallenberg) g cvx ⇒ g(x) = supa,b(ax + b) ⇒ E[g(X)] = E[supa,b(aX + b)] ≥ E[aX + b] = aE[X] + b ⇒

E[g(X)] ≥ supa,b(aE[X] + b) = g(E[X]).

Monotonicity of Norms 1 ≤ p ≤ r <∞ ⇒ ‖X‖p ≤ ‖X‖r ⇒ Lr ⊂ Lp.

Proof: (click)

Xn = (|X| ∧ n)p, g : x 7→ x
r
p cvx. =⇒

(
E [Xn]

) r
p ≤ E

[
X
r/p
n

]
= E[(|X| ∧ n)r] ≤ E[|X|r], MCT it.

Cauchy-Schwarz X,Y ∈ L2 =⇒ |E[XY ]| ≤ E[|XY |] ≤ ‖X‖2‖Y ‖2 =⇒ XY ∈ L1.

Corollary: X,Y ∈ L2 ⇒ ‖X + Y ‖2 ≤ ‖X‖2 + ‖Y ‖2.

Proof: (click)

W.l.o.g. X,Y ≥ 0. Xn = X ∧ n, Yn = Y ∧ n. 0 ≤ E[(aXn + bYn)2] = a2E[X2
n] + 2abE[XnYn] + b2E[Y 2

n ]

(∀a, b). Convert to quadratic (in a
b ): b2

((
a
b

)2 E[X2
n] + 2abE[XnYn] + E[Y 2

n ]
)
≥ 0 =⇒ ∆ ≥ 0

=⇒ E[XnYn]2 ≤ E[X2
n]E[Y 2

n ] ≤ E[X2]E[Y 2]. MCT: 0 ≤ XnYn ↗ XY .

Inequalities p > 1, 1
p + 1

q = 1. f, g ∈ Lp(S,Σ, µ)3, and h ∈ Lq(S,Σ, µ) (generic)

? (Holder) |µ(fh)| ≤ µ(|fh|) ≤ ‖f‖p‖h‖q.

? (Minkovski)4 ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

3‖f‖p :=
(
µ(|f |p)

) 1
p =

(∫
|f |p dµ

) 1
p

4Directly implies vector space structure of Lp.
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3.2 Day 2: Expectation and Lp Spaces

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Covariance Cov (X,Y ) := E[(X − µX)(Y − µY )] = E[XY ]− E[X]E[Y ]

Variance Var (X) = E[(X − µX)2] = E[X2]− E[X]2 = Cov (X,X)

Inner Product 〈X,Y 〉 = E[XY ].

Correlation ρX,Y = Cov (X,Y )√
Var (X) Var (Y )

= 〈X − µX , Y − µY 〉
‖X − µX‖2‖Y − µY ‖2

, |ρX,Y | ≤ 1 (Cauchy-Schwarz)

Note Interpret ρ = cos θ.

Orthogonality U ⊥ V if 〈U, V 〉 = E[UV ] = 0.

Note If µU = µV = 0, orthogonality = uncorrelated

Cauchy Sequence {xn}∞n=1 Cauchy if ∀ε > 0,∃N, s.t. n,m ≥ N ⇒ d(xn, xm) < ε.

Note Alternatively, {xn} Cauchy if lim
N→∞

sup
n,m≥N

d(xn, xm) = 0. d(·, ·) = ‖ · ‖p for Lp spaces.

.

MAIN THEOREMS:

Pythagoras U ⊥ V =⇒ ‖U + V ‖2 = ‖U‖2 + ‖V ‖2 (L2-norm).

Parallelogram Law ‖U + V ‖2 + ‖U − V ‖2 = 2‖U‖2 + 2‖V ‖2.

Variance of Sum X1, . . . , Xn ∈ L2: 5 Var (X1 + · · ·+Xn) =
∑
n

Var (Xn) +
∑
i 6=j

Cov
(
Xi, Xj

)
Completeness of Lp Xn Cauchy in Lp =⇒ ∃X ∈ Lp S.T. ‖Xn−X‖p → 0 (i.e., Xn → X∈Lp)

Proof: (click)

Pass to subseq. s.t. ‖Xkn+1 − Xkn‖p < 2−n, use monotonicity of norms:
∑

E[|Xkn+1 − Xkn |] < ∞

⇒ E
[∑
|Xkn+1 −Xkn |

]
< ∞ ⇒

∑
|Xkn+1 − Xkn | < ∞ a.s. ⇒ X := limnXkn(ω) exists w.p. 1. X

measurable, deduce (FATOU + V-Space) X ∈ Lp & Xn → X in Lp.

5To make sure Var (X) <∞.
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Orthogonal Proj. K ⊂ L2 complete, V-Subspace.

∀X ∈ L2, ∃Y ∈ K S.T.


(X − Y ) ⊥ Z, ∀Z ∈ K

‖X − Y ‖2 = inf
Z∈K
‖X − Z‖2

Note If ∃Ỹ ∈ K s.t. one of above holds, then Ỹ = Y, a.s.

Note Y is called a version of the orthogonal projection of X onto K.

Note Application: project L2(Ω,F ,P) onto K = L2(Ω,G ,P) (G ⊂ F σ-algebra)

Expec. of Func. of r.v. h : (R,B)→ (R,B), then E[h(X)] =
∫

Ω
h(X(ω)) dP(ω) =

∫
R
h(x) dPX(x).

Also, h(X) ∈ L1(Ω,F ,P) ⇐⇒ h ∈ L1(R,B,PX).

Proof: (click)

Verify for h = 1B (B ∈ B), extend to simple fnc., generalize via MCT (standard machinery).

PDF and Cont. r.v. X cont. r.v. if ∃fX : R→ [0,∞] Borel s.t. F (x) =
∫

(−∞,x]
fX(x) dλ(x).

Therefore PX(B) =
∫
B

fX(x) dλ(x) and fX = dPX
dλ

, Radon-Nikodym.

Proof: (click)

F (x) = P((−∞, x]) =
∫

(−∞,x]
fX(x) dλ(x). Define µ(·) on (R,B) µ(B) =

∫
B

fX(x)dλ(x).

µ(·) valid measure, agrees with PX on π(R) = {(−∞, x] : x ∈ R}: uniqueness thm =⇒ µ = PX .

Exp. for Cont. r.v. h : (R,B)→ (R,B), then E[h(X)] =
∫
R
h(x)fX(x) dx

Also, E[|h(X)|] <∞ ⇐⇒
∫
R
|h(x)|fX(x) dx <∞.
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3.3 Day 3: Strong Laws

Main Reference(s): − David Williams, Probability With Martingales, 1991 [13] Chap.7

. − Rick Durrett, Probability: Theory & Examples, 2010 [5] Sec. 2.4

.

MAIN THEOREMS:

Independence and Expectation (X ⊥⊥ Y ) ∈ L1 =⇒ E[XY ] = E[X]E[Y ] ⇒ XY ∈ L1.

(X ⊥⊥ Y ) ∈ L2 =⇒ Cov (X,Y ) = 0 & Var (X + Y ) = Var (X) + Var (Y )

Proof: (click)

If X = X+ −X−, Y = Y + − Y −, then holds if proven for X,Y ≥ 0.

So, WLOG X,Y ≥ 0. 0 ≤ Xn ↗ X, 0 ≤ Yn ↗ Y , simple r.v.’s. Prove E[XnYn] = E[Xn]E[Yn] using

σ(X) ⊥⊥ σ(Y ). Conclude, by MCT as 0 ≤ XnYn ↗ XY ⇒ E[XY ] = E[X]E[Y ].

Careful! If X and Y are not ⊥⊥, (X,Y ) ∈ L1 6⇒ XY ∈ L1

Example: X : (Ω,F )→ (N, 2N): P (X = k) = c

k2+ε (with ε ∈ (0, 1]) and Y = X.

Then E[X] = E[Y ] =
∑
k

c

k1+ε <∞ and E[XY ] = E[X2] =
∑
k

c

kε
=∞.

Proving Xn
a.s.−→ 0 Let {Xn}∞n=1 r.v. .

(a) ∃s > 0 s.t.
∑
n

E[|Xn|s] <∞ =⇒ Xn
a.s.−→ 0.

(b) ∀ε > 0 s.t.
∑
n

P
(
|Xn| > ε

)
<∞ =⇒ Xn

a.s.−→ 0.

(c) Xn
a.s.−→ 0 ⇐⇒ lim

n→∞
P

(
sup
m≥n
|Xm| > ε

)
= 0, ∀ε > 0

Proof: (click)

(a) By MCT,
∑
n

E[|Xn|s] = E

[∑
n

|Xn|s
]
<∞ ⇒

∑
n

|Xn|s <∞, a.s. ⇒ |Xn|s
a.s.−→ 0 ⇒ Xn

a.s.−→ 0.

(b) Fix ε = 1
k . By BC1, {|Xn| > 1

k} occurs finitely often w.p. 1 ⇒ P
(

lim sup
n→∞

Xn >
1
k

)
= 0

⇒ P

⋃
k

{
lim sup
n→∞

Xn >
1
k

} = 0 (union of null) =⇒ lim supn→∞Xn ≤ 0, a.s. ⇒ Xn
a.s.−→ 0.

(c) Notice RHS equiv. to P
(
|Xm| ≤ ε,∀m ≥ n

)
→ 1 as n → ∞: An := {ω ∈ Ω : |Xm(ω)| ≤ ε,∀m ≥ n}.

An ↗
⋃
n

An = Ω (since |Xn|
a.s.−→ 0), hence P(An)→ 1.
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Est. for the Max. of Avg. (EMA) Xn∼X i.i.d. X∈L1: P
(

sup
n≥1

|X1 + · · ·+Xn|
n

> a

)
≤ E[|X|]

a
.

(∵)See Lecture 18 LLN from Yury 6.436.

Kolmogorov’s Maximal Ineq. {Xi ⊥⊥} ∈ L2, E[Xi] = 0, Var (Xi) <∞, Sn = X1 + . . . Xn.

Then: P
(

max
1≤k≤n

|Sk| ≥ x
)
≤ Var (Sn)

x2 , ∀x ≥ 0

Note Chebyshev: P
(
|Sn| ≥ x

)
≤ Var (Sn)

x2 , ∀x ≥ 0

Note Recall Kolmogorov 0-1 law: this ineq. helps proving P (A) = 1.

Proof: (click)

Let Ak := {ω ∈ Ω : |Sk(ω)| ≥ x, |Sj(ω)| < x, ∀j < k}.

Notice {ω ∈ Ω : max
1≤k≤n

|Sk(ω)| ≥ x} =
⋃
k

Ak & Ai ∩Aj = ∅, i 6= j: then

1Ω ≥ 1∪kAk =
∑
k

1Ak =⇒ E
[
S2
n

]
≥
∑
k

E
[
1AkS

2
n

]
=
∑
k

E
[
1Ak(Sk + Sn − Sk)2

]
⇒ E

[
S2
n

]
≥
∑
k

E
[
1AkS

2
k + 1Ak2Sk(Sn − Sk) + 1Ak(Sn − Sk)2

]
≥
∑
k

(
E
[
1AkS

2
k

]
+ E

[
1Ak2Sk(Sn − Sk)

])
As Sk1Ak∈σ(X1, . . . , Xk) & (Sn−Sk)∈σ(Xk+1, . . . , Xn), so Sk1Ak⊥⊥(Sn−Sk) ⇒ E

[
1AkSk(Sn − Sk)

]
= 0.

Hence E[S2
n] ≥

n∑
k=1

E[1AkS2
k] ≥

n∑
k=1

E[x2
1Ak ] = x2

n∑
k=1

P (Ak) = x2P
(

max
1≤k≤n

|Sk| ≥ x
)

.

Strong Laws of Large Number .

(1) Kolmogorov (Not ID but L2) {Xn} ∈ L2 ⊥⊥, mean {µn}, variance {σ2
n} s.t.

∑
n

σ2
n

n2 <∞

(2) 6.436 (IID but L2) {Xn} ∈ L2 i.i.d., mean µ, variance σ2

(3) Khinchine (IID but L1) {Xn} ∈ L1 i.i.d., mean µ

(4) Durrett (IID but E exists) {Xn} ∈ L1 IID with E[Xn] exists6 (i.e. E[X+] or E[X+] <∞)

=⇒ 1
n

n∑
k=1

Xk
a.s.−→ µ. If not I.D. 1

n

n∑
k=1

(Xk − µk) a.s.−→ 0.

Note SLLN needs E[|X|] <∞ (cf Week 2 Day 2): if E[|X|] =∞, then lim sup Sn
n

=∞ a.s.

Proof: (click)

Assume Xi ≥ 0, generalize via Xi = X+
i −X

−
i .

(4) Durrett: WLOG E[X+
i ] =∞,E[X−i ] <∞ (E [Xi] exists).

Let XM
i := Xi ∧M (truncate at fixed M) & SMn =

n∑
i=1

XM
i

SLLN===⇒
in L2

lim
n

SMn
n
→ E[XM

i ].

Now, Xi ≥ XM
i ⇒ lim inf

n

Sn
n
≥ lim

n

SMn
n

= E[XM
i ] MCT===⇒ E[XM

i ]↗ E[Xi] =∞ ⇒ lim inf
n

Sn
n

=∞ a.s.

6Note that the mean can be infinite!
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Proof: (click)

(1) Kolmogorov: Sn =
n∑
k=1

(Xk − µk) Ak :=
{
ω ∈ Ω : max

2k−1≤n<2k
|Sn|
n

> ε

}
.{

max
2k−1≤n<2k

|Sn|
n
≥ ε
}

=
{
∃n∈

[
2k−1, 2k

]
s.t.|Sn| ≥ nε

}
⊂
{

max
2k−1≤n<2k

|Sn| ≥ 2k−1ε

}
⊂
{

max
1≤n<2k

|Sn| ≥ 2k−1ε

}
Apply Kolmogorov: P (Ak) ≤ P

(
max

1≤n<2k
|Sn| ≥ 2k−1ε

)
≤ 1(

2k−1ε
)2 Var (S2k) = 4

ε2
1

22k

2k∑
i=1

σ2
i

Now
∞∑
k=1

P (Ak) ≤ 4
ε2

∞∑
k=1

2k∑
i=1

1
2k σ

2
i = 4

ε2

∞∑
i=1

σ2
i

∞∑
k=log2 i

1
22k ≤

8
ε2

∞∑
i=1

σ2
i

i2
<∞ BC 1===⇒P (Ak i.o. ) = 0.

Since {Ak i.o. } =
{
|Sn|
n
≥ ε i.o.

}
, so P

(
lim supn

|Sn|
n
≤ ε
)

= 1 Take ε = 1
k → 0: Sn

n

a.s.−→ 0.

(2) 6.436: Notice E
[(

Sn
n
− µ

)2
]

= Var
(
Sn
n

)
= σ2

n

Claim: Sk
2

k2
a.s.−→ µ

(∵)
∞∑
k=1

E

[(
Sk2

k2 − µ
)2
]

=
∞∑
k=1

σ2

k2 <∞ Lemma (a)======⇒
(
Sk2

k2 − µ
)2

a.s.−→ 0

OR (∵)Fix ε > 0:
∞∑
k=1

P

(∣∣∣∣Sk2

k2 − µ
∣∣∣∣ > ε

)
≤
∞∑
k=1

1
k2
σ2

ε2 <∞ Lemma (b)=======⇒ Sk2

k2
a.s.−→ µ

Claim: : Sn
n

a.s.−→ µ.

(∵)Take k2 ≤ n ≤ (k + 1)2: k2

(k + 1)2︸ ︷︷ ︸
→1

Sk2

k2︸︷︷︸
a.s.−→µ

≤ Sn
n
≤ (k + 1)2

k2︸ ︷︷ ︸
→1

S(k+1)2

(k + 1)2︸ ︷︷ ︸
a.s.−→µ

=⇒ Sn
n

a.s.−→ µ

Note (Durrett Thm. 2.3.8) Suppose 0 ≤ Xn ↗ r.v., 0 ≤ cn ↗ . Goal: show Xn

cn

a.s.−→ c.

Idea: pick subseq. {cnk}∞k=1 s.t.
cnk+1

cnk
→ 1. Show that Xnk

cnk

a.s.−→ c, and conclude.

(3) Khinchine: Idea: Truncate, so ∈ L2, bound difference via estimate for max. of avg.

Let Yn = Xn1Xn≤k, Zn = Xn1Xn>k, Tn = Y1 + · · ·+ Yn
n

, and Z∗ = sup
n≥1

|Z1 + · · ·+ Zn|
n

.

Claim: P
(

sup
m≥n

|Sm|
m

> ε

)
→ 0.

(∵)Triangle inequality ⇒ |Sm|
m
≤ |Tm|

m
+ Z∗

=⇒ P

(
sup
m≥n

|Sm|
m

> ε

)
≤ P

(
sup
m≥n

|Tm|
m

+ Z∗ > ε

)
≤ P

(
sup
m≥n

|Tm|
m

>
ε

2

)
︸ ︷︷ ︸

:=A

+P
(
Z∗ >

ε

2

)
︸ ︷︷ ︸

:=B

.

Notice |Yn| ≤ |Xn| ∈ L1 DCT===⇒ |E[Yn]| → E[Xn] = 0 as k →∞ & Zn → 0 a.s. ⇒ E[|Zn|]→k→∞ 0.

Choose k large : |E[Yn]| < ε
4 ,E[|Zn|] < δ ε2 . By EMA, B ≤ E[|Z|]

ε/2 < δ.

Next, |Tm| ≤ |Tm − E[Tm]|+ |E[Tm]|: sup
m≥n

|Tm|
m

>
ε

2 ⇒ sup
m≥n

|Tm − E[Tm]|
m

>
ε

4 .

Thus A ≤ P
(

sup
m≥n

|Tm − E[Tm]|
m

>
ε

4

)
→n→∞ 0, as SLLN holds for L2.

Hence, lim sup
n→∞

P

(
sup
m≥n

|Sm|
m

> ε

)
≤ δ =⇒ P

(
sup
m≥n

|Sm|
m

)
→ 0, as n→∞.
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EXERCISES:
Exercise:
(Durrett 2.5.1) Let X1, X2, . . . iid, E[X] = 0, Var (X) = C <∞, and Sn = X1 + . . .+Xn.

Use Kolmogorov’s Maximal’s Inequality to show that Sn
np

a.s.−→ 0 for p > 1/2.

Solution: (click)

Fix a subsequence n = mα where α(2p− 1) > 1.

Let Am =
{
ω ∈ Ω : max

(m−1)α≤k≤mα
|Sk| ≥ (m− 1)αpε

}
.

By KMI: P (Am) ≤ 1
ε2(m− 1)2αpVar (Smα) ≤ Cmα

ε2(m− 1)2αp ≤
Cmα

ε2(m/2)2αp ≤
1

mα(2p−1) ·
C · 22αp

ε2

So
∞∑
m=1

P (Am) ≤ C · 22αp

ε2

∞∑
m=1

1
mα(2p−1) <∞

BC-1===⇒ P
(
{Am i.o. }

)
= 0

=⇒ max
(m−1)α≤k≤mα

|Sk| ≤ ε(m− 1)αp for a.a. ω for sufficiently large m.

In particular, ∀k ∈ [(m− 1)α,mα]: |Sk|
kp
≤ |Sk|

(m− 1)αp ≤
ε����(m− 1)αp

����(m− 1)αp = ε a.e. .

Hence, lim sup
k→∞

|Sk|
kp
≤ ε almost surely. Taking εk = 1

k ↘ 0, countable, we conclude.

Alternative Solution Notice, it suffices to prove (due to Kronecker’s lemma) that
∞∑
n=1

Xn

np
< ∞

a.s. , which holds (Kolmogorov 2-series) if
∞∑
n=1

Var
(
Xn

np

)
=
∞∑
n=1

C

n2p <∞, which is true since p > 1
2 .
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3.4 Day 4: Application of SLLN

Main Reference(s): − David Williams, Probability With Martingales, 1991 [13] Chap.7

. − Rick Durrett, Probability: Theory&Examples, 2010 [5] Sec. 2.4/5

.

KEYWORDS:

Empirical CDF (E-CDF) {Xi iid} ∼ F , then: Fn(x) := 1
n

n∑
m=1

1{Xm ≤ x}

Note Fn(x) counts the frequency of the observed values that are ≤ x.

.

MAIN THEOREMS:

Glivenko-Cantelli / CDF Approx Fn = E-CDF: lim
n→∞

sup
x
|Fn(x)− F (x)| = 0 a.s.

Proof: (click)

Fn(x−) := 1
n

n∑
k=1

1Xk<x
a.s.−→ F (x−) = P (X < x). Take k, xj,k := inf

{
y : F (y) ≥ j

k

}
.

∃N(ω) S.T. |Fn(xj,k−)− F (xj,k−)| < 1
k , & |Fn(xj,k)− F (xj,k)| < 1

k , 1 ≤ j ≤ k − 1, n ≥ N(ω).

Claim: F (xj,k−) = limx↗xj,k F (x) ≤ j
k , as x < xj,k ⇒ F (x) ≤ j

k .

Claim: F (xj,k) ≥ j
k , as xj,k = inf{. . . }, ∃yn ∈ {. . . } S.T. yn ↘ xj,k ⇒ F (xj,k) = limyn↘xj,k F (yn) ≥ j

k
a

Now x ∈ (xj−1,k, xj,k) ⇒ Fn(x) ≤ Fn(xj,k−) ≤ F (xj,k−) + 1
k ≤ F (xj−1,k) + 2

k ≤ F (x) + 2
k .

Similar argument ⇒ Fn(x)− F (x) ≥ − 2
k ⇒ |Fn(x)− F (x)| ≤ 2

k , ∀x, ∀n ≥ N(ω).

aArgument uses right continuity of CDF.
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Renewal Process {Xi iid} with Xi ∈ (0,∞) a.s. , and Tn := X1 + . . . + Xn (nth arrival time).

Let Nt := sup{n : Tn ≤ t} (# arrivals before t) =⇒ Nt
t

a.s.−→ 1
E[X] (works for 1

∞
= 0).

Proof: (click)

Observe that TNt ≤ t < TNt+1 and that t < TNt+1 =⇒ TNt+1 →∞ =⇒ Nt →∞ (can’t be bdd)a.

TNt ≤ t < TNt+1 =⇒ TNt
Nt
≤ t

Nt︸︷︷︸
a.s.−→E[X]

≤ TNt+1

Nt + 1︸ ︷︷ ︸
a.s.−→E[X]

Nt + 1
Nt︸ ︷︷ ︸
a.s.−→1

=⇒ t

Nt

a.s.−→ E[X].

(∵)Since Nt ↗∞ a.s. SLLN===⇒ Tn(ω)
n

a.s.−→ E[X] so
TNt(ω)(ω)
Nt(ω)

a.s.−→ E[X] and Nt(ω) + 1
Nt(ω)

a.s.−→ 1.

aTo be more precise, Nt ↗∞ a.s. , as t→∞.
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Chapter 4

Week 4: Convergence of Random

Series & Large Deviation
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4.1 Day 1: Convergence of Random Series

Main Reference(s): − David Williams, Probability With Martingales, 1991 [13] Chap.12

. − Rick Durrett, Probability: Theory&Examples, 2010 [5] Sec. 2.4/5

.

KEYWORDS:

Convergence of Series
∞∑
n=1

an converges iff lim
N→∞

N∑
n=1

an exists1.

.

MAIN THEOREMS:

SLLN (Etemadi Ideas) (IID, L1){Xk} ⊥⊥, E
[
|Xk|

]
<∞, EXk = µ ⇒ Sn

n

a.s.−→ µ.

Lemma 4.1.1. .

(a) Let Yk := Xk1{|Xk| ≤ k}2 , & Tn =
n∑
k=1

Yk. Then Tn
n

a.s.−→ µ =⇒ Sn
n

a.s.−→ µ.

(b)
∞∑
k=1

Var (Yk)
k2 ≤ 4E

[
|X|
]
<∞.

Proof: (click)

(a) Claim: P (Xk 6= Yk, i.o. ) = 0. This shows P
(
|Sn − Tn|

n
→ 0

)
= 1.

(∵)
∞∑
k=1

P (Xk 6= Yk) ≤
∞∑
k=1

P
(
|Xk| > k

)
=
∞∑
k=1

P
(
|X1| > k

)
≤
∫ ∞

0
P
(
|X1| > x

)
dx = E

[
|X1|

]
<∞, BC-1.

(b)
∞∑
k=1

Var (Yk)
k2 ≤

∞∑
k=1

E
[
Y 2
k

]
k2 =

∞∑
k=1

1
k2

∫ ∞
0

2yP
(
|Yk| > y

)
dy =

∞∑
k=1

1
k2

∫ k

0
2yP

(
|Yk| > y

)
dy

So,
∞∑
k=1

Var (Yk)
k2 ≤

∞∑
k=1

1
k2

∫ k

0
2yP

(
|X| > y

)
dy≤

∞∑
k=1

1
k2

∫ ∞
0

1{y<k}2yP
(
|X| > y

)
dy

So,
∞∑
k=1

Var (Yk)
k2 ≤

∫ ∞
0

∞∑
k=1

1{y<k}
1
k2 2yP

(
|X| > y

)
dy =

∫ ∞
0

 ∞∑
k=1

1
k21{y<k}

 2yP
(
|X| > y

)
dy.

Claim:
∞∑
k=1

1
k21{y<k} ≤

2
y

. This shows that
∞∑
k=1

Var (Yk)
k2 ≤

∫ ∞
0

(
2
y

)
2yP

(
|X| > y

)
dy = 4E

[
|X1|

]
(∵)
∑
k≥y

1
k2 ≤

a
∫ ∞
y−1

1
x2 dx = 1

y − 1 ≤
2
y

.

aHere, we assume y ∈ N, and y ≥ 2. For slightly more rigor, use floor functions (see Durrett p.74 [5])

1If an ≥ 0, then either
∞∑
n=1

an <∞ or =∞, but it necessarily exists.

2Different from Yk = Xk1{|Xk| ≤ n} for fixed n (see SLLN proof).
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Kolmogorov 2-Series (⊥⊥) {Xn ⊥⊥},
∞∑
n=1

EXn <∞ &
∞∑
n=1

Var (Xn) <∞ =⇒
∞∑
n=1

Xn <∞ a.s.

Proof: (click)

WLOG, prove for X̃n ⊥⊥ E [Yn] = 0 (X̃n = Xn − µn, hence
∑
n

X̃n <∞ ⇐⇒
∑
n

Xn <∞).

To prove convergence, need to prove S̃n :=
n∑
k=1

X̃k is Cauchy, via Kolmogorov’s maximal ineq (KMI).

KMI ⇒ P

(
max

{M≤m≤N}
|Sm − SM | > ε

)
≤ 1
ε2 Var (SN − SM ) = 1

ε2

N∑
n=M+1

σ2
n −−−−→

N→∞

1
ε2

∞∑
n=M+1

σ2
n.

P

(
sup
m≥M

|Sm − SM | > ε

)
≤ 1
ε2

∞∑
n=M+1

σ2
n −−−−→

M→∞
0.

sup
n,m≥M

|Sn − Sm|︸ ︷︷ ︸
:=∆M

≤ sup
n≥M

|Sn − SM |︸ ︷︷ ︸
:=AM

+ sup
m≥M

|Sm − SM |︸ ︷︷ ︸
:=BM

. Claim: ∆ := lim
M→∞

∆M = 0 a.s.

∆M ≥ ∆M+1 ≥ · · · ≥ 0 ⇒ lim
M

∆M exists a.s.

Trick: lim
M
P (∆M > ε) ≤ lim

M
P
(
{AM > ε/2} ∪ {BM > ε/2}

)
≤ lim

M
P
(
AM > ε/2

)
+ lim

M
P
(
BM > ε/2

)
= 0

Now, 0 = lim
M
P (∆M > ε) = P

⋂
M

{∆M > ε}

 ≥ P (∆ > ε) so P (∆ > ε) = 0 (∵)∩M{∆M > ε} ⊃ {∆ >

ε}

So lim
k→∞

P
(

∆ >
1
k

)
ε=1/k== P

⋃
k

{
∆ >

1
k

} = P (∆ > 0) = 0 =⇒ ∆ = 0 a.s.

Trick: C ≤ A+B r.v.s: P (C > ε) ≤ P
(
{A > ε/2} ∪ {B > ε/2}

)
≤ P

(
A > ε/2

)
+P
(
B > ε/2

)
.

Kolmogorov’s 3-Series (⊥) {Xn ⊥⊥}, A > 0 & Yi = Xi1|Xi|≤A: Then
∞∑
n=1

Xn converges a.s. ⇔

(i)
∞∑
n=1

P
(
|Xn| > A

)
<∞

(ii)
∞∑
n=1

E [Yn] <∞

(iii)
∞∑
n=1

Var (Yn) <∞.

Proof: (click)

(⇒) CLT (Durrett [5], Example 3.4.7)

(⇐)
∞∑
n=1

P (Xn 6= Yn) ≤
∞∑
n=1

P
(
|Xn| > A

)
<∞ BC-1===⇒ P (Xn 6= Yn, i.o. ) = 0

This shows that
∑
nXn <∞ ⇐⇒

∑
n Yn <∞. End: apply Kolmogorov’s 2-series on {Yn}.

Kronecker’s Lemma an ↗∞ &
∞∑
n=1

xn
an

<∞ =⇒ 1
an

n∑
k=1

xk → 0.

(∵)See Durrett [5] p.81; Williams [13] p.117.
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SLLN Alternative Proof (iid, L1) {Xiiid}, E
[
|Xi|

]
<∞, then Sn

n

a.s.−→ µ.

Proof: (click)

As before, Yn := Xn1|Xn|≤n, Tn = Y1 + · · ·+ Yn
n

.

Claim:
(
Sn
n

a.s.−→ µ

)
⇐⇒

(
Tn
n

a.s.−→ µ

)
. (∵)see Etamadi’s idea (a)

Claim: Zn := Yn − E [Yn]: Then 1
n

n∑
k=1

Zk
a.s.−→ 0.

(∵)
∞∑
n=1

Var
(
Yn
n

)
<∞ ⇒

∞∑
n=1

Var
(
Zn
n

)
<∞ Kolmogorov=======⇒

2-Series

∞∑
n=1

Zn
n

<∞ a.s. Kronecker’s=======⇒
Lemma

1
n

n∑
k=1

Zk
a.s.−→ 0.

Claim: (Kolmogorov Truncation Lemma) 1
n

n∑
k=1

E [Yk]→ µ. Use Ỹn :=

 X, if |X| ≤ n,

0, if |X| > n.
.

(∵)We have Ỹn ∼= Yn =⇒ E[Ỹn] = E[Yn].

Ỹn
a.s.−→ X and |Ỹn| ≤ |X|

DCT===⇒ E[Ỹn]→ E[X] = µ
Cesaro====⇒ 1

n

n∑
k=1

E [Yk]→ µ

Kolmogorov Truncation Lemma {Xn}∞n=1
iid∼ X, X ∈ L1.

Yn =

 Xn, if |Xn| ≤ n,

0, if |Xn| > n.
=⇒



E [Yn]→ E [X]

P (Yn 6= Xn i.o. ) = 0
∞∑
n=1

Var (Yn)
n2 <∞

(∵)see above
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L2 Rate of Conv. (iid, L2){Xn iid}, E [Xn] = 0 & Var (Xn) = σ2 <∞ =⇒ Sn

n
1
2 (logn) 1

2 +ε
a.s.−→ 0

Note Kolmogorov’s test (Durrett [5], Thm 8.8.2): lim sup
n→∞

Sn

n
1
2 (log logn) 1

2
= σ
√

2 a.s.

Proof: (click)

∞∑
n=1

Var
(

Xn

n
1
2 (logn) 1

2 +ε

)
= σ2

a2
1

+ σ2
∞∑
n=2

1
n(logn)1+2ε <∞

Kolmogorov=======⇒
2-Series

∞∑
n=1

Xn

n
1
2 (logn) 1

2 +ε <∞ a.s.

Kronecker’s=======⇒
Lemma

1
n

n∑
k=1

Xk

k
1
2 (log k) 1

2 +ε
a.s.−→ 0.

Lp Rate of Conv. Xi iid, E [Xi] = 0 & ∃p ∈ (1, 2) S.T. E
[
|Xi|p

]
<∞. Then, Sn

n1/p
a.s.−→ 0.

Note This applies to case where second moment might possibly be infinity.

Converse: p > 0: Sn
n1/p

a.s.−→ 0 =⇒ E
[
|X1|p

]
<∞

Proof: (click)

Similar techniques, Yk := Xk1|Xk|≤k1/p . Start with
∞∑
k=1

P (Xk 6= Yk) ≤
∞∑
k=1

P
(
|Xi|p > k

)
≤ E

[
|Xi|p

]
< ∞.

Hence, suff. to show Y1 + · · ·+ Yn
n1/p

a.s.−→ 0.

Infinite Mean {Xi iid}, E[|Xi|] =∞, Sn = X1 + . . .+Xn & {an ∈ R+} S.T. an
n
↗:

∞∑
n=1

P
(
|Xi| ≥ an

)
<∞ =⇒ lim sup

n→∞

|Sn|
an

= 0;
∞∑
n=1

P
(
|Xi| ≥ an

)
=∞ =⇒ lim sup

n→∞

|Sn|
an

=∞
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4.2 Day 2: Large Deviations

Main Reference(s): Rick Durrett, Probability: Theory&Examples, 2010 [5] Sec. 2.6

.

KEYWORDS:

Moment Generating Function MX(s) := E
[
esX

]
, whenever finite.

Rate Function For any a > 0, ϕ(a) := sup
s>0

(
sa− logE

[
esX

])
.

MAIN THEOREMS: Assume {Xn} iid and E [Xi] = 0.

Chernoff Bound {Xn} iid, E [Xi] = 0 =⇒ P (Sn ≥ na) ≤ e−n(sa−logMX(s)), assuming MX(s) <

∞ over s ∈ [0, c], for some c > 0.

Proof: (click)

P (Sn ≥ na) = P
(
es·Sn ≥ es·na

)
≤
E
[
es·Sn

]
esna

= e−n(sa−logMX(s)) using Markov Ineq, and MSn(s) = MX(s)n

Note If M(s) =∞ everywhere, then ineq. above trivial.

Existence of the MGF X ≥ 0 and ∃c > 0 S.T. MX(c) <∞: Then MX(s) <∞ ∀s ∈ (−∞, c].

Note Hence, once we have MGF to be finite at a point, we realize that it is finite on an

interval, therefore we can take e.g. derivatives etc.

Proof: (click)

MX(s) = E
[
esX

]
=
∫
{ω:X(ω)≥0}

esX dP+
∫
{ω:X(ω)<0}

esX dP ≤
∫

Ω
ecX dP+ 1 = 1 +MX(c) <∞.

Differentiability of the MGF X ≥ 0 & MX(s) < ∞ ∀s ∈ (−∞, c] for some c > 0. Then

E[X] (1)== E

[
lim
h↘0

ehX − 1
h

]
(2)== lim

h↘0

E
[
ehX

]
− 1

h
,and

dk

(ds)kMX(s) = E
[
XkesX

]
.
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Proof: (click)

(a) Claim: E[Xk] <∞, ∀k

(∵)Recall xk ≤ esx for x large enough (i.e. x ≥ a for some a).

E[Xk] =
∫

Ω
Xk(ω) dP(ω) =

∫
{ω:X(ω)≥a}

Xk dP+
∫
{ω:X(ω)<a}

Xk dP ≤
∫
{ω:X(ω)≥a}

esX dP+ ak
∫

Ω
1 dP

So E[Xk] ≤MX(s) + ak <∞

Alternative Proof: Taylor: esX =
∞∑
k=0

(sX)k

k! ≥ skXk

k! ⇒ E
[
esX

]
≥ sk

k!E
[
Xk
]
.

(b) Claim: E[XkesX ] <∞, for every s < c and ∀k

(∵)Recall xkesx ≤ es′x ∀k, s, s′ with s′ ∈ (s, c) for x large enough (i.e. x ≥ a for some a).

E[XkesX ] =
∫

Ω
Xk(ω)esX(ω) dP(ω) =

∫
{ω:X(ω)≥a}

XkesX dP+
∫
{ω:X(ω)<a}

XkesX dP

So E[XkesX ] ≤
∫
{ω:X(ω)≥a}

es
′X dP+ ak

∫
Ω
esa dP ≤MX(s′) + akesa <∞

(c) Claim: (ehX − 1)/h ≤ XehX

(∵)Let f(h) := ehX
Mean Value=======⇒

Theorem
∃t ∈ (0, h) S.T. f(h)− f(0) = hf ′(t) ⇒ ehX − 1 = hXetX ≤ hXehX

(d) Claim: E[X] (1)== E

[
lim
h↘0

ehX − 1
h

]
(∵)X = lim

h↘0

ehX − 1
h

by definition of the derivative of ehX with respect to h is XehX evaluated at 0.

Similarly, d

ds
MX(s) = lim

h↘0

MX(s+ h)−MX(s)
h

= lim
h↘0

E
[
e(s+h)X

]
− E

[
esX

]
h

=
E
[
esX(ehX − 1)

]
h

.

(e) Claim: E
[

lim
h↘0

esX
ehX − 1

h

]
(2)== lim

h↘0

E
[
e(h+s)X

]
− E

[
esX

]
h

(∵)We have gh(X) := ehX − 1
h

esX =⇒ gh(X) h↘0−−−→ XesX , and by (b) & (c): gh(X) ≤ Xe(h+s)X ∈ L1(Ω,P)

=⇒ lim
h↘0

E
[
e(h+s)X

]
− E

[
esX

]
h

= E
[
gh(X)

] h↘0−−−→
DCT

E
[
XesX

]
= E

[
lim
h↘0

esX
ehX − 1

h

]

Str. Convexity of Log MGF M(s)<∞ for s ∈ [0, c]⇒ h(s)= sa−logMX(s) is strictly concave

Proof: (click)

We now know MX(s) differentiable, so d2

ds2 logMX(s) = d

ds

M ′X(s)
MX(s) = M ′′X(s)MX(s)−M ′X(s)2

MX(s)2

So d2

ds2 logMX(s) =
E
[
X2esX

]
E
[
esX

]
−
(
E
[
XesX

]2)
MX(s)2

≥
Cauchy-Schwarz

(
E
[
XesX

]2)− (E [XesX]2)
MX(s)2 = 0

=⇒ d2

ds2h(s) ≤ 0.

To get strict concavity, recall that Cauchy-Schwarz is strict unless X2esX = αesX a.s. , which happens if

X =
√
α a.s. . Unless X is a degenerate r.v., the log MGF is strictly concave.
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Tighter Upper Bound If M(s) <∞ for s ∈ [0, c] & a > 0, then:

P (Sn ≥ na) ≤ e−nϕ(a), ∀n ≥ 1; where ϕ(a) := sup
s>0

[
sa− logMX(s)

]
> 0,

where sup
s>0

[
sa− logMX(s)

]
= s∗a− logMX(s∗) with s∗ is S.T. M

′
X(s∗)

MX(s∗)
!= a

Proof: (click)

Claim: : s ≤ 0 =⇒ sa− logMX(s) ≤ 0. Hence, can restrict to s ≥ 0.

(∵)sa− logMX(s) = sa− logE
[
esX

]
≤

Jensen’ssa− E
[
log esX

]
= sa− sE [X] = sa ≤ 0.

Claim: ∃s ∈ (0, c) s.t. (sa− logMX(s)) > 0.

(∵) d
ds

∣∣∣∣
s=0

(sa− logE
[
esX

]
) = a− E [X]

E
[
e0X

] = a > 0.

Convexity of Rate Function ϕ(a) := sup
s>0

(sa− logMX(s)) is convex ∀a > 0.

Corollary: ϕ(a) is continuous on (0,∞)

Proof: (click)

Notice, ϕ(a) = sups>0 fs(a), where fs(a) = sa − logMX(s). Each fs(a) is affine in a, hence, ϕ(·), being

pointwise sup of family of affine functions is convex.

Analysis (e.g. Rudin) =⇒ “convex ⇒ continuous”

Log MGF Asymptotics X S.T. FX(x) < 1 ∀x ∈ R (X does not admit a finite upper bound)

=⇒ lim
s→∞

logM(s)
s

=∞.

Proof: (click)

Fix b > 0: MX(s) = E
[
esX

]
= E

[
E
[
esX |1X>b

]]
≥ ebsP (X > b).

P (X > b) = 1− FX(b) > 0 =⇒ logM(s)
s

≥ b+ 1
s

log
(
P (X > b)

)
∀s large enough.

=⇒ lim
s→∞

logM(s)
s

≥ b+ lim
s→∞

1
s

logP (X > b) = b ∀b large enough (as P (X > b) > 0⇒ logP (X > b) > −∞)

As b→∞: lim
s→∞

logM(s)
s

≥ lim
b→∞

b = +∞.

Corollary: ∀a > 0, lim
s→∞

(sa− logMX(s)) = −∞.

(∵)sa− logMX(s) = s
(
a− logMX(s)

s︸ ︷︷ ︸
→+∞

)
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Tight Lower Bound Assume X ∼ fX is continuous, E [X] = 0, MX(s) < ∞ ∀s ∈ R, and

0 < P (X ≤ x) < 1 ∀x ∈ R 3.

Then: lim
n→∞

1
n

logP (Sn ≥ na) = −ϕ(a), ∀a > 0.

Note So Chernoff bound is tight: e−n(ϕ(a)+ε) ≤ P (Sn ≥ na) ≤ e−nϕ(a) ∀ε > 0, ∀n large.

Proof: (click)

From upper bound, lim sup
n→∞

1
n

logP (Sn ≥ na) ≤ −ϕ(a). Hence, we need to prove the other direction.

3Namely X has full support on R, so r.v. does not admit a finite lower/upper bound.
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EXERCISES: From Durrett Chap. 2.6

Exercise:
Suppose that

−ν := lim sup
x→∞

logP(X > x)
x

< 0. (4.1)

Establish that MX(s) <∞ for all s ∈ [0, ν).

Solution: (click)

From Eq. (4.1), we know that given any ε > 0, we can find some xε such that

logP(X > x)
x

≤ −ν + ε,

for all x ≥ xε. We will rewrite this as

P(X > x) ≤ e(−ν+ε)x. (4.2)

Now we want to turn the actual task of the problem, which is to show that E[esX ] exists. For each s, we

will pick a particular ε such that Eq. (4.2) holds; the precise method of picking ε will be given a few lines

below. We use a helpful formula for expectation:

E[esX ] =
∫ +∞

−∞
P(esX > t)dt

=
∫ xε

0
P(esX > t)dt+

∫ ∞
xε

P(esX > t)dt.

Now the first part above is the integral of a function which is at most 1 over a finite region, so it is finite;

the second we bound as

∫ ∞
xε

P(esX > t)dt =
∫ ∞
xε

P(X >
log t
s

)dt ≤
∫ ∞
xε

e(−ν+ε)(log t/s)dt ≤
∫ ∞
xε

t(−ν+ε)/s

Now for any particular s ∈ [0, ν), we can pick ε so that s+ ε < ν, guaranteeing that (−ν + ε)/s < −1. And

now we are done, because
∫∞

0 tαdt is finite when α < −1.
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Chapter 5

Week 5: Product Measures &

Conditional Expectation
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5.1 Day 1: Product Measures

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Coordinate Maps π1 : S1 × S2 → S1, π2 : S1 × S2 → S2, π1(x1, x2) = x1 & π2(x1, x2) = x2.

Product σ−Algebra (S1,Σ1) and (S2,Σ2) measurable spaces. Then:

Σ1×Σ2 := σ(π1, π2) = σ

({
π−1

1 (B1), π−1
2 (B2) : B1 ∈ Σ1, B2 ∈ Σ2

})
=σ
(
{B1 × S2, S1 ×B2 : S1,∈ Σ1, S2 ∈ Σ2}

)
.

Note B1 × S1 and S2 ×B2=∞-strips; B1 ×B2=rectangle

Note (S,Σ, µ) := (S1,Σ1, µ1)× (S2,Σ2, µ2)

Product Measure Let E ∈ Σ := Σ1 × Σ2:

µ(E) :=
∫
S1

∫
S2

1E dµ1 dµ2 =
∫
S2

∫
S1

1E dµ2 dµ1 (using the bΣ integral order swap).

In particular, E = E1 × E2 (Ei ∈ Σi) =⇒ µ(E) = µ1(E1)µ2(E2).

Joint Laws PX,Y : B ×B → [0, 1] S.T. PX,Y (E) = P
(
(X,Y ) ∈ E

)
, ∀E ∈ Σ1 × Σ2

Joint CDF FX,Y : R2 → R S.T. FX,Y (x, y) = P (X ≤ x, Y ≤ y).

.

MAIN THEOREMS:

Product σ-Algebra Characterization
∞-strips︷ ︸︸ ︷

Σ1 × Σ2 = σ
({ bounded rectangles︷ ︸︸ ︷

B1 ×B2 : B1 ∈ Σ1, B2 ∈ Σ2

})
.

Note The rectangle generator is easily seen to be a π-system.

Proof: (click)

A := {S1 ×B2, B1 × S2 : B1 ∈ Σ1, B2 ∈ Σ2} & B := {B1 ×B2 : B1 ∈ Σ1, B2 ∈ Σ2}.

(S1×B2)∩ (B1×S2) = B1×B2 ⇒ B1×B2 ∈ σ(A), for all B1 ∈ Σ1, B2 ∈ Σ2 ⇒ B ⊆ σ(A)⇒ σ(B) ⊆ σ(A).

B1 × Σ2, S1 ×B2 ∈ B ⇒ A ⊆ B ⇒ σ(A) ⊆ σ(B).

Hence, Σ1 × Σ2 = σ(A) = σ(B) .

59



Meas. Check f : (S1×S2,Σ1×Σ2)→ (R,B):
∫
S1

∫
S2

f(x1, x2) dµ1(x1) dµ2(x2) makes sense⇔

(i) ∀x1 ∈ S1, x2 7→ f(x1, x2) Σ2-meas. . (iii) x1 7→
∫
S2

f(x1, x2) dµ2(x2) Σ1-meas.

(ii)∀x1, f(x1, x2) µ2-integrable . (iv) x1 7→
∫
S2

f(x1, x2) dµ2(x2) µ1-integr.

Proof: (click)

We will use Monotone-Class argument.

(i) Let H =
{
f : (S1 × S2,Σ1 × Σ2)→ (R,B) bdd S.T. (i) holds.

}
.

− f, f̃ ∈ H. x2 7→ f(x1, x2) + f̃(x1, x2) is Σ2-meas., sum of meas.

− f(x1, x2) = 1 =⇒ x2 7→ f(x1, x2) = 1, ∀x1, & 1 ∈ mΣ2.

− 0 ≤ fn ↗ f =⇒ ∀x1, 0 ≤ fn(x1, x2)︸ ︷︷ ︸
:=gx1

n (x2)

↗ f(x1, x2)︸ ︷︷ ︸
:=gx1 (x2)

. gx1(x2) = lim
n→∞

gx1
n (x2), meas.

− {B1 ×B2 : B1 ∈ Σ1, B2,∈ Σ2} π-system. f := 1B1×B2(x1, x2).

x1 /∈ B1 =⇒ x2 7→ f(x1, x2) = 0 ∈ mΣ2.

x1 ∈ B1 =⇒ x2 7→ f(x1, x2) = 1B2 ∈ mΣ2.

(iii) Let H =
{
f : (S1 × S2,Σ1 × Σ2)→ (R,B) bdd S.T. (iii) holds.

}
.

− f, f̃ ∈ H. x1 7→
∫
S2

(f(x1, x2) + f̃(x1, x2)) dµ2(x2) =
∫
S2

f(x1, x2) dµ2(x2) +
∫
S2

f̃(x1, x2) dµ2(x2).

− f(x1, x2) = 1 =⇒ x1 7→
∫
S2

1 dµ2 = µ2(S2)a.

− 0 ≤ fn ↗ f =⇒ ∀x1, lim
n→∞

∫
S2

fn(x1, x2) dµ2(x2)︸ ︷︷ ︸
µ1-meas

MCT==
∫
S2

f(x1, x2) dµ2(x2), so µ1-meas.

− {B1 ×B2 : B1 ∈ Σ1, B2,∈ Σ2} π-system & f := 1B1×B2(x1, x2):

x1 /∈ B1 =⇒ x1 7→
∫
S2

0 dµ2(x2) = 0 ∈ mΣ1.

x1 ∈ B1 =⇒
∫
S2

f(x1, x2) dµ2(x2) =
∫
S2

1B2 dµ2(x2) = µ2(B2).

Hence, x1 7→
∫
S2

1B1×B2(x1, x2) dµ2(x2) = µ2(S2)1B1(x1) ∈ mΣ1.

(ii) and (iv) ∃B > 0 S.T. |f(x1, x2)| ≤ B & µ1,2 finite ⇒ integrability.
aThis requires finiteness of µ2. Will also comment that results hold for σ-finite spaces too. However, for non-σ-finite

measures, it won’t hold; as will be exhibited via an example later.
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Integral Order (bΣ) ∀ bdd & meas. f : (S1 × S2,Σ1 × Σ2)→ (R,B):∫
S1

∫
S2

f(x1, x2) dµ2(x2) dµ1(x1) =
∫
S2

∫
S1

f(x1, x2) dµ1(x1) dµ2(x2). (?)

Proof: (click)

H =
{
f : (S1 × S2,Σ1 × Σ2)→ (R,B) bdd, S.T. (?) holds

}
. GOAL: H mon. class.

− H vec. space. X

− f(·, ·) = 1 ⇒ RHS = LHS = µ1(S1)µ2(S2). X

− 0 ≤ fn ↗ f & fn ∈ H:
∫
S1

∫
S2

f dµ2 dµ1 =
∫
S1

∫
S2

lim
n→∞

fn dµ2 dµ1
MCT==

∫
S1

lim
n→∞

∫
S2

fn dµ2 dµ1

MCT== lim
n→∞

∫
S1

∫
S2

fn dµ2 dµ1
fn∈H== lim

n→∞

∫
S2

∫
S1

fn dµ1 dµ2
MCT==

∫
S2

lim
n→∞

∫
S1

fn dµ1 dµ2

MCT==
∫
S2

∫
S1

lim
n→∞

fn dµ1 dµ2 =
∫
S2

∫
S1

f dµ1 dµ2

− f = 1E1×E2 , then RHS & LHS eval. to µ1(E1)µ2(E2).

Uniqueness of Product Meas. µ := µ1×µ2 = unique meas. S.T. µ(E1×E2) = µ1(E1)×µ2(E2)

Proof: (click)

I = {E1 × E2 : E1 ∈ Σ1, E2 ∈ Σ2}, π-system generating Σ1 × Σ2

Apply uniqueness theorem (µ(S1 × S2) <∞, as finite measures).

Fubini’s Theorem (Si,Σi, µi) (i = 1, 2) σ-finite meas. space1, (S,Σ, µ) = (S1,Σ1, µ1)×(S2,Σ2, µ2).

IF either: f ≥ 0 OR
∫
S2

∫
S1

|f |dµ1 dµ2 <∞

THEN: µ(f) =
∫
S1×S2

f d(µ1 × µ2) =
∫
S1

∫
S2

f dµ2 dµ1 =
∫
S2

∫
S1

f dµ1 dµ2

Proof: (click)

Already proven for bΣ, in particular for SF+.

For any f ≥ 0, take 0 ≤ fn ↗ f , fn ∈ SF+, and apply MCT.

If µ(|f |) <∞, then do |f | = f+ − f− & use linearity.

Measurability of Diag. (S1,Σ1)=(S2,Σ2) =(R,B), D =
{

(x, y) ∈ R2 : x = y
}
⇒ D ∈ B ×B.

1We have proven until this point the results for finite meas. spaces. For σ-finite meas. spaces, it is all of a matter
of breaking into countably many pieces of finite measure, and then arguing via MCT.
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Proof: (click)

(1st Way) Let f : R2 → R be f(x, y) = x− y. Proj. maps meas. ⇒ f B ×B meas, D = f−1({0}).

(2nd Way) Dc=
{

(x, y) : x 6= y
}Trick:

==
⋃
q∈Q
{(x, y) : x > q > y} =

⋃
q∈Q

(q,∞)× (−∞, q). (q,∞), (−∞, q) ∈ B.

(3rd Way) Vertical lines {x} × R are meas. Rotation======⇒
Invariance

diagonal is meas.

Exercise:
Breaking Fubini: NON σ-finite (counting) measure on ([0, 1],B).

Let (Si,Σi) = ([0, 1],B) (i = 1, 2) & µ1 = Lebesgue & µ2 = counting. Then D diagonal:∫
S1

∫
S2

1D(x1, x2) dµ2 dµ1 =
∫
S1

µ2({x1}) dµ1(x1) = µ1([0, 1]) = 1.∫
S2

∫
S1

1D(x1, x2) dµ1 dµ2 =
∫
S2

µ1({x2}) dµ2(x2) = 0.

Exercise:
Breaking Fubini: Discrete nonnegativity and integrability.

Let (Si,Σi) = (N, 2N) (i = 1, 2) & P1 = P2 = counting (i.e., P(A) = |A|).

Then:
∫
A

g dP1 =
∑
a∈A

f(a)&
∫
B

h dP2 =
∑
b∈B

h(b)&
∫
C

f d(P1 × P2) =
∑
c∈C

f(c).

Let f be S.T.


f(m,m) = 1

f(m,m+ 1) = −1

f(x, y) = 0 elsewhere.

=⇒ visually:

1 −1 0 0 · · ·

0 1 −1 0 · · ·

0 0 1 −1 · · ·

0 0 0 1 · · ·
...

...
...

...
...

So:
∫

Ω1

∫
Ω2

f dP1 dP2 =
∑
n

∑
m

f(n,m) = 0 6= 1 =
∑
m

∑
n

f(n,m) =
∫

Ω2

∫
Ω1

f dP2 dP1.

Fail: here, f is neither nonnegative nor integrable
(∑

| ± 1| =∞
)

.

Exercise:
Breaking Fubini: Continuous nonnegativity and integrability.

Let (S1,Σ1) =
(
(0, 1),B

)
and (S2,Σ2) =

(
(1,∞),B

)
& P1 = P2 = Lebesgue.

Let f(x, y) = e−xy − 2e−2xy (can take positive and negative values)

So:
∫

Ω1

∫
Ω2

f dP1 dP2 =
∫ 1

0

∫ ∞
1

f(x, y) dy dx > 0 >
∫ 1

0

∫ ∞
1

f(x, y) dx dy.

Fail: here, f is neither nonnegative nor integrable.
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Exp. Value : Area under Graph X : (Ω,Σ,P)→ (R,B, λ), X ≥ 0, p-space (Ω× R,P× λ).

Graph of X =
{

(ω, x) : 0 ≤ x ≤ X(ω)
}
⊂ Ω× R (check it is Σ×B-meas.).

Area of graph : (P× λ)( graph of X) =
∫

Ω×R
1graph of X d(P× λ).

Do in two ways to show E [X] =
∫ ∞

0
P (X ≥ x) dx.

Joint Law: Uniqueness B ×B gen. by. I =
{

(−∞, x]× (−∞, y] : x, y ∈ R
}

, I π-system.

PX,Y uniquely specified by FX,Y .

Joint Continuity X,Y jointly cont. if ∃f : (R2,B(R2))→ (R≥0,B), S.T.

PX,Y ((−∞, x]× (−∞, y]) =
∫
1(−∞,x]×(−∞,y]f(x, y) dx dy.

(∵)Argue that PX,Y (F ) =
∫
1F f(x, y) dx dy, ∀F ∈ B ×B.

Marginal Density Recall, X cont. ⇔∃f non-neg.∈ σB S.T. PX(S) =
∫
S

f dx.

Then: fX(x) =
∫
R
f(x, y) dy.

Proof: (click)

PX(S) = PX,Y (S × R) = P
(
(X,Y ) ∈ S ×R

)
=
∫ ∫

1S×R(x, y)f(x, y) dy dx =
∫
S

∫
R
f(x, y) dy︸ ︷︷ ︸
:=fX(x)

; dx

Independence and Product Measure X ∼ (PX , FX)&Y ∼ (PY , FY ). TFAE:

? X ⊥⊥ Y

? PX,Y = PX × PY

? FX,Y (x, y) = FX(x) · FY (y)

? If joint PDF exists: fX,Y (x, y) = fX(x) · fY (y) for λ× λ − a.e. (x, y)
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5.2 Day 2: Conditional Expectation

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Conditional Expectation Given (Ω,F ,P), G ⊂ F σ-algebra & X S.T. E
[
|X|
]
<∞.

Let (?) =


(i) E

[
|Y |
]
<∞

(ii) Y is G −measurable

(iii)
∫
G

Y dP =
∫
G

X dP, ∀G ∈ G

A r.v. Y satisfying (?) is called a version of the conditional expectation E
[
X|G

]
=: Y a.s.

Note E[X|Z] := E[X|σ(Z)] and E[X|Z1, . . . , Zn] := E[X|σ(Z1, . . . , Zn)]

Idea I can decide whether or not events of Y happen only based on the info I have in G ⊂ F .

Example: Coin toss: Ω = {H,T,HH,HT, TH, TT} F = {H,T}2 G = {H,T}

Y1 = “1st coin toss is H” ∈ G , while Y2 = “2nd coin toss is H” 6∈ G

.

MAIN THEOREMS:

Practical π-system Check To check that a r.v. Y verifies (?) part (iii), enough to check on a

π-system I S.T. Ω ∈ I and σ(I) = G .

Proof: (click)

I π-system, G = σ(I). A :=
{
G ∈ G :

∫
G

Y dP =
∫
G

X dP
}

.

− Ω ∈ A.

− G,H ∈ A, G ⊆ H ⇒ H \G ∈ A

(
since

∫
H\G

Y dP =
∫
H

Y dP−
∫
G

Y dP

)
.

− An ∈ A, An ↗ A. We know 1An ↗ 1A. Yn = Y 1An . |Yn| ≤ |Y | ∈ L1, apply DCT.

Hence, A is a d-system containing I ⇒ A = d(A) ⊇ d(I) = σ(I) = G .
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Existence & Uniqueness Given (Ω,F ,P), r.v. X S.T. E
[
|X|
]
<∞ & G ⊆ F (sub σ-algebra):

=⇒ There exists a r.v. Y satisfying (?) above.

If ∃Ỹ satisfying (?), then Ỹ = Y a.s. (i.e., P
(
Ỹ = Y

)
= 1).

Note ϕ(Y ) is a Cond. Exp of X ⇐⇒ ϕ is meas. & E
[
(ϕ(Y )−X)g(Y )

]
= 0 ∀g meas.2

Proof: (click)

Uniqueness: Assume X ∈ L1(Ω,F ,P) & Y, Ỹ ver. of E
[
X|G

]
. GOAL: P(Y = Ỹ ) = 1.

By definition of E
[
X|G

]
: Y, Ỹ ∈ L1 and E

[
(Y − Ỹ )1G

]
= 0 ∀G ∈ G by (?) part (iii).

An :=
{
ω ∈ Ω : Y (ω)− Ỹ (ω) ≥ 1

n

}
. Y − Ỹ ∈ mG ⇒ An ∈ G .

0 =
∫
An

(Y − Ỹ ) dP ≥ 1
n
P(An) ⇒ P(An) = 0 ⇒ P

(⋃∞
n=1An

)
= 0 ⇒ P

(
Y > Ỹ

)
= 0.

Similarly, P
(
Ỹ > Y

)
= 0 ⇒ P

(
Y = Ỹ

)
= 1.

Existence: Radon-Nikodym Proof

Recall Radon-Nikodym (RN) Theorem: P2 � P1 ⇒ ∃Y : Ω→ R≥0 S.T. P2(A) = EP1 [Y 1A] =
∫
A
Y dP1.

WLOG assume X ≥ 0 (otherwise use X+ −X−) & X not constant: then E [X] <∞ & E [X] > 0. (i) X

Define P2(A) := E [X1A]
E [X] =

∫
A

X dP∫
Ω
X dP

(∀A ∈ G ). P2(·) valid prob. meas. (on G ) & P2 � P.

Radon=====⇒
Nikodym

a ∃Z ≥ 0 S.T. P2(A) = E [Z1A] =
∫
A

Z dP and Z is G -measurable.

=⇒ E[X1A] = E [Z1A]E[X] = E
[

(Z E[X])︸ ︷︷ ︸
:=Y

1A

]
.

=⇒ If Y := (Z E[X]), then E[Y 1A] = E[X1A] ∀A ∈ G (iii) X and Y is G -measurable (ii) X

Existence: Orthogonal Projection Proof (see Williams [13] p. 86)

Sketch: use the completeness of L2(Ω,G ,P) & L2(Ω,G ,P) ⊂ L2(Ω,F ,P) to construct orthogonal projection

Y of X onto L2(Ω,G ,P). Y will be the conditional expectation of X.

Recall that we get 〈X − Y,Z〉 = 0 together with Z = 1G for G ∈ G .

Once done with L2: truncate Xn = X ∧ n & MCT===⇒ get L1.

aWe apply RN to the sub-σ-algebra G : P2 & P are measures on (Ω,G ), where P can safely be restricted to sub-σ-algebra,
then the RN derivative is automatically measurable w.r.t. the common σ-algebra on which measures are defined.

Positivity 0 ≤ X ∈ L1 =⇒ E
[
X|G

]
≥ 0 a.s. .

Proof: (click)

Z := E
[
X|G

]
. An =

{
ω : Z(ω) < − 1

n

}
=⇒ 0 ≥ − 1

n
P (An) ≥

∫
An

Z dP =
∫
An

X dP ≥ 0 =⇒ P (An) = 0 ∀n.

2Try Monotone Class Argument
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Properties of Conditional Expectation Let X ∈ L1 & G ,H sub σ-algebras of F .

(a) Iterated Expectation: E
[
E
[
X|G

]]
= E [X]

(b) Full Knowledge: X is G -meas =⇒ E
[
X|G

]
= X a.s.

(c) Linearity: E
[
a1X1 + a2X2|G

]
= a1E

[
X1|G

]
+ a2E

[
X2|G

]
a.s. , ∀a1, a2 ∈ R

(d) Positivity: X ≥ 0 =⇒ E
[
X|G

]
≥ 0 a.s.

Corollary: X ≤ X̃ =⇒ E
[
X|G

]
≤ E

[
X̃|G

]
a.s.

(e) MCT: 0 ≤ Xn ↗ X =⇒ E
[
Xn|G

]
↗ E

[
X|G

]
a.s.

(f) Fatou: Xn ≥ 0 =⇒ E
[
lim inf
n→∞

Xn|G
]
≤ lim inf

n→∞
E
[
Xn|G

]
a.s.

Y ∈ L1: Xn ≤ Y ∀n =⇒ E
[
lim sup
n→∞

Xn|G
]
≥ lim sup

n→∞
E
[
Xn|G

]
a.s.

(g) DCT: Xn
a.s.−→ X, |Xn| ≤ V a.s. ∀n & E[V ] <∞ =⇒ E

[
Xn|G

] a.s.−→ E
[
X|G

]
(h) Jensen: c : R→ R convex: E

[
|c(X)|

]
<∞ =⇒ E

[
c(X)|G

]
≥ c

(
E
[
X|G

])
a.s.

Corollary: ‖E
[
X|G

]
‖p ≤ ‖X‖p, ∀p ≥ 1.

(i) Tower Property:H ⊂ G ⊂ F =⇒ E
[
E
[
X|G

] ∣∣∣H] = E
[
E
[
X|H

] ∣∣∣G ] = E
[
X|H

]
a.s.

(j) Factorization: Z G -meas. & bounded =⇒ E
[
ZX|G

]
= ZE

[
X|G

]
a.s.

Corollary: X ∈ Lp(Ω,F ,P), Z ∈ Lq(Ω,F ,P), p, q > 1:

p−1 + q−1 = 1 =⇒ E
[
ZX|G

]
= ZE

[
X|G

]
a.s.

Corollary: X ∈ (mF )+, Z ∈ (mG )+: E[X],E[ZX] <∞ =⇒ E
[
ZX|G

]
= ZE

[
X|G

]
a.s.

(k) Independence: H ⊥⊥ σ
(
σ(X),G

)
=⇒ E

[
X|σ(G ,H)

]
= E

[
X|G

]
a.s.

Corollary: X ⊥⊥ H =⇒ E
[
X|H

]
= E [X] a.s.

Proof: (click)

(a) Iterated Expectation: E
[
E
[
X|G

]]
= E [X]

Taking G = Ω in (?, iii): E
[
X|G

]
= E [Y ] = E [Y 1Ω] = E [X1Ω] = E [X].

(b) Full Knowledge: X is G -meas =⇒ E
[
X|G

]
= X a.s.

Notice Y = X satisfies all assumptions in (?).

(c) Linearity: E
[
a1X1 + a2X2|G

]
= a1E

[
X1|G

]
+ a2E

[
X2|G

]
a.s. , ∀a1, a2 ∈ R

Linear combo of G -meas. fnc. is G -meas & linearity of integral.

(d) Positivity: X ≥ 0 =⇒ E
[
X|G

]
≥ 0 a.s. Corollary: X ≤ X̃ =⇒ E

[
X|G

]
≤ E

[
X̃|G

]
a.s.

Proved above. For corollary, use linearity and positivity.

(e) MCT: 0 ≤ Xn ↗ X =⇒ E
[
Xn|G

]
↗ E

[
X|G

]
a.s.

Yn := E
[
Xn|G

]
⇒ 0 ≤ Yn ↗ (from monotonicity and linearity) ⇒ Y := lim

n→∞
Yn ∃

Yn ∈ mG=====⇒ Y ∈ mG .∫
G

Y dP MCT== lim
n→∞

∫
G

Yn dP
def== lim

n→∞

∫
G

Xn dP
MCT==

∫
G

X dP (∀G ∈ G ).
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Proof: (click)

(f) Fatou: Xn ≥ 0 =⇒ E
[
lim inf
n→∞

Xn|G
]
≤ lim inf

n→∞
E
[
Xn|G

]
a.s.

Y ∈ L1: Xn ≤ Y ∀n =⇒ E
[
lim sup
n→∞

Xn|G
]
≥ lim sup

n→∞
E
[
Xn|G

]
a.s.

Yn := inf
k≥n

Xk ↗ lim inf
n→∞

Xn
MCT===⇒ E

[
lim inf
n→∞

Xn|G
]

= lim
n→∞

E
[

inf
k≥n

Xk|G
]
≤ lim
n→∞

inf
k≥n

E
[
Xk|G

]
Y −Xn≥0 Fatou===⇒E

[
lim inf
n→∞

Y −Xn|G
]
≤lim inf

n→∞
E
[
Y −Xn|G

] Y ∈ L1

====⇒E
[
lim inf
n→∞

−Xn|G
]
≤lim inf

n→∞
E
[
−Xn|G

]
.

(g) DCT: Xn
a.s.−→ X, |Xn| ≤ V a.s. ∀n & E[V ] <∞ =⇒ E

[
Xn|G

] a.s.−→ E
[
X|G

]
Consequence of two Fatou lemmas with lim sups and lim infs.

(h) Jensen: c : R→ R convex: E
[
|c(X)|

]
<∞ =⇒ E

[
c(X)|G

]
≥ c

(
E
[
X|G

])
a.s.

Let S =
{

(a, b) ∈ Q2 : ax+ b ≤ c(x),∀x
}
⇒ s(x) = sup

(a,b)∈S
(ax+ b).

E
[
c(X)|G

]
= E

[
sup

(a,b)∈S
aX + b|G

]
≥ aE

[
X|G

]
+ b

sup(a,b)====⇒
RHS

E
[
X|G

]
≥ sup

(a,b)∈S
aE
[
X|G

]
+ b = s(E

[
X|G

]
).

Corollary: ‖E
[
X|G

]
‖p ≤ ‖X‖p, ∀p ≥ 1.

Take c(x) = |x|p, apply Jensen’s & take E[·]:
(
E
[
|X|p

])1/p
=
(
E
[
E
[
|X|p|G

]])1/p
≥

(
E
[∣∣∣E [X|G ]∣∣∣p])1/p

(i) Tower Property: H ⊂ G ⊂ F =⇒ E
[
E
[
X|G

] ∣∣∣H] = E
[
E
[
X|H

] ∣∣∣G ] = E
[
X|H

]
a.s.

E
[
E
[
X|G

]︸ ︷︷ ︸
:=Z

∣∣∣H] = E
[
X|H

]︸ ︷︷ ︸
:=Y

GOAL: Y = E
[
Z|H

]
.

X Y is H-measurable.

X
∫
G

Y dP ∀G∈H==
∫
G

X dP ∀G∈G==
∫
G

Z dP ⇒
∫
G

Y dP =
∫
G

Z dP (∀G ∈ H).

(j) Factorization: Z G -meas & bounded =⇒ E
[
ZX|G

]
= ZE

[
X|G

]
a.s.

Y := E
[
X|G

]
GOAL: Y Z = E

[
ZX|G

]
.

X Y Z is G -measurable (prod of two meas. fnc.)

XXn:=X∧n& Yn:=E
[
Xn|G

]
& Zk=Z∧k Z bdd=====⇒

OrthProj
E
[
(Yn −Xn)Z1G

]DCT : Yn bdd== lim
k→∞

E
[
(Yn −Xn)Zk1G

]
=0

XnZ1G
a.s.−→ XZ1G, and |XnZ1G| ≤ |XZ| ∈ L1 DCT===⇒E [XZ1G] = E [Y Z1G].

Monotone Class Proof:

H :=
{
Z : (Ω,G )→ (R,B) : Z is bounded and conclusion holds

}
X Z = 1 ∈ H, as Y = E

[
X|G

]
⇒ E [Y 1G] = E [X1G] ,∀G ∈ G .

X H clearly is a vector space.

X Z = 1E (E ∈ G ) G ∩ E===⇒
∈ G

∫
G

Y Z dP =
∫
G∩E

Y dP =
∫
G∩E

X dP =
∫
G

XZ dP.

X 0 ≤ Zn ↗ Z, Z bdd, Zn ∈ H
DCT===⇒ Z ∈ H.

So (j) satisfied ∀ Z bdd & G -meas. For any Z: truncate Zn = Z ∧ n, and use DCT & E
[
|XZ|

]
<∞.

Corollary: X ∈ Lp(Ω,F ,P), Z ∈ Lq(Ω,F ,P), p, q > 1: p−1 + q−1 = 1 ⇒ E
[
ZX|G

]
= ZE

[
X|G

]
a.s.

Corollary: X ∈ (mF )+, Z ∈ (mG )+: E[X],E[ZX] <∞ =⇒ E
[
ZX|G

]
= ZE

[
X|G

]
a.s.

For both, notice that above proof hold whenever |XZ| ∈ L1.
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Proof: (click)

(k) Independence: H ⊥⊥ σ
(
σ(X),G

)
=⇒ E

[
X|σ(G ,H)

]
= E

[
X|G

]
a.s.

Let Y := E
[
X|G

]
. GOAL: Y = E

[
X|σ(G ,H)

]
.

X Y is G -meas. ⇒ Y is σ(G ,H) meas.

X Goal: E [X1E ] = E [Y 1E ] ∀ E ∈ σ(G ,H). Idea: show on π-system I = {G ∩H : G ∈ G , H ∈ H}

E [X1G1H ] ⊥⊥== E [X1G]E [1H ] Def== E [Y 1G]E [1H ] ⊥⊥== E [Y 1G1H ]

Corollary: X ⊥⊥ H =⇒ E
[
X|H

]
= E [X] a.s.

Take G = {∅,Ω}, and recall E
[
X|G

]
= E [X].

Exercise:
Let G = {∅, A,Ac,Ω}. Compute E

[
X|G

]
, ∀G ∈ G .

Generalization: {A1, . . . , An} ∈ G a partition of Ω: Y = c11A1 + . . .+ cn1An with ci = E [X1Ai ]
P (Ai)

.

Solution: (click)

Notice Y can take at most two values. Indeed, if

∃c1, c2, c3 ∈ R, distinct s.t. Y (ωi) = ci (i = 1, 2, 3)

for some ωi’s, then, Y −1({c1}) 6= ∅,Ω. Only possibil-

ity is that Y −1({c1}) = A. In this case, Y −1({c2}) =

Ac, but ω3 /∈ A & /∈ Ac ⇒⇐

(i) Let Y =

 c1, if ω ∈ A,

c2, if ω ∈ Ac.
. WLOG assume c1 < c2.

Then: Y −1(−∞, x] =
{
ω : Y (ω) ≤ x

}
=


∅ if x < c1

A if c1 ≤ x < c2

Ω c2 ≤ x

=⇒ Y −1(−∞, x] ∈ G , ∀x ∈ R

Since it’s true over π(Y ) =
{{
ω : Y (ω) ≤ x

}
: x ∈ R

}
, then, Y is G -measurable. X

(ii) E
[
|Y |
]

= |c1|P (A) + |c2|P (Ac) ≤ |c1|+ |c2| <∞. X

(ii)
∫
A

Y dP = c1P(A) != E [X1A] ⇒ c1 = E [X1A]
P(A) is indeed a constant X,

&
∫
Ac
Y dP = c2P(Ac) != E [X1Ac ] ⇒ c2 = E [X1Ac ]

P(Ac) is indeed a constant X
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5.3 Day 3: More on Conditional Expectation

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Intuition Behind A ∈ σ(Z) Z : (Ω,F )→ (R,B): A ∈ σ(Z) =
{
Z−1(B) : B ∈ B

}
.

MAIN THEOREMS:

Technical Point 1 X ∈ L1, G ⊂ F , assume ∃Y s.t. Y ∈ mG &
∫
G

Y ; dP =
∫
G

X dP,∀G ∈ G .

=⇒ E
[
|Y |
]
≤ E

[
|X|
]
<∞.

Note This follows as conditional expectation reduces norms in Lp spaces (p ≥ 1).

Proof: (click)

0 ≤
∫
Y >0

Y dP =
∫
Y >0

X dP =

∣∣∣∣∣
∫
Y >0

X dP

∣∣∣∣∣ ≤
∫
Y >0
|X| dP

& 0 ≤ −
∫
Y≤0

Y dP = −
∫
Y≤0

X dP =

∣∣∣∣∣−
∫
Y≤0

X dP

∣∣∣∣∣ ≤
∫
Y≤0
|X| dP.

=⇒ E
[
|Y |
]

=
∫
Y >0

Y dP+
∫
Y≤0

(−Y ) dP ≤ E
[
|X|
]
<∞.

Technical Point 2 X ≥ 0. Then ∃Y S.T.
∫
G

Y dP =
∫
G

X dP,∀G ∈ G .

Proof: (click)

Xn := X ∧ n, Yn := E
[
Xn|G

]
⇒ 0 ≤ Xn ↗ X ⇒ 0 ≤ Yn ↗. Hence Y := lim

n→∞
Yn(ω) exists (possibly ∞).∫

G

Y dP MCT== lim
n→∞

∫
G

Yn dP
def== lim

n→∞

∫
G

Xn dP
MCT==

∫
G

X dP.
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Agreement with Traditional Usage X,Z jointly continuous3, h-Borel S.T. E
[
|h(X)|

]
<∞:

=⇒ g(Z) = E
[
h(X)|σ(Z)

]
, where g(z) =

∫
R
h(x)fx|z(x|z) dx & fx|z(x|z) = fx,z(x,z)

fZ(z)

Proof: (click)

(i) g(Z) ∈ mσ(Z). Will prove g(·) is Borel.

Claim: h̃(x, z) = h(x) is B ×B measurable.

(∵)h̃−1(B) = h−1(B)× R ∈ B ×B, ∀B ∈ B. Hence, h(x)fx|z(x|z) is measurable with respect to B ×B.

⇒
∫
h(x)fx|z(x|z) dx is B-measurable, hence (i) is proven.

(ii) Prove:
∫
A

g(Z) dP =
∫
A

h(X) dP, ∀A ∈ σ(Z).

A ∈ σ(Z) ⇐⇒ ∃B ∈ B S.T. A = Z−1B. Hence, 1A(ω) = 1B(Z(ω)).∫
A

g(Z) dP =
∫

Ω
1B(Z(ω))g(Z(ω)) dP =

∫
R

1B(z)g(z)fz(z) dz.∫
A

h(X) dP =
∫
1B(Z(ω))h(X(ω)) dP =

∫
R

∫
R
1B(z)h(x) dPX,Z =

∫
R

∫
R
1B(z)h(x)fx|z(x|z)fz(z) dxdz

Fubini====⇒ =
∫
R
1B(z)

(∫
R
h(x)fx|z(x|z)dx

)
︸ ︷︷ ︸

=g(z)

fz(z)dz =
∫
R
1B(z)g(z)fz(z)dz.

Independence {Xi}ni=1 ⊥⊥, h : (Rn,Bn)→ (R,B) S.T. E
[
|h(X1, . . . , Xn)|

]
<∞.

Then E
[
h(X1, . . . , Xn)|X1

]
= ϕ(X1), for ϕ(x) := E

[
h(x,X2, . . . , Xn)

]
.

Proof: (click)

Claim: ϕ(·) is B-measurable, hence ϕ(X1) is σ(X1)-measurable.

ϕ(x) =
∫

Ω
h(x,X2(ω), . . . , Xn(ω)) dP(ω) ==︸︷︷︸

Change of Measure

∫
Rn−1

h(x, x2, . . . , xn) dPX2,...,Xn(x2, . . . , xn).

S1 = (R,B,PX1), S2 = (Rn−1,Bn−1,PX2,...,Xn). h : (S1 × S2)→ (R,B) “Meas. Checks”==========⇒
part (iii)

ϕ(x) is B-function.

Claim: ∀G ∈ σ(X1), E
[
ϕ(X1)1G

]
= E

[
h(X1, . . . , Xn)1G

]
.

G ∈ σ(X1)⇐⇒ G = X−1
1 (B). Hence, 1G(ω) = 1B(X1(ω)).

E
[
h(X1, . . . , Xn)1G

]
=
∫

Ω
1G(ω)h(X1(ω), . . . , Xn(ω)) dP =

∫
Ω
1B(X1(ω))h(X1(ω), . . . , Xn(ω)) dP.

=
∫
Rn

1B(x1)h(x1, . . . , xn) dPX1,...,Xn =
∫
Rn

1B(x1)h(x1, . . . , xn) dPX1dPX2,...,Xn

Fubini==
∫
R
1B(x1)

(∫
Rn−1

h(x1, . . . , xn) dPX2,...,Xn

)
dPX1 =

∫
R
1B(x1)ϕ(x1) dPX1

=⇒ E
[
h(X1, . . . , Xn)1G

]
= E

[
1B(X1)ϕ(X1)

]
= E

[
1Gϕ(X1)

]
.

3i.e., ∃ f(x, z) : R2 → R≥0 B ×B-measurable S.T.
dPX,Z
dλ× dλ

(x, z) = f(x, z).

So ∀h Borel, we can compute P(h(X,Z) = ·) or E[h(X,Z)] using 2 changes of measures: P→ PX,Z → f(x, z)dx dz.
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Existence of Cond. Probs Want to define a conditional probability P
(
X ∈ A|G

)
:= E

[
1B(X)|G

]
.

Problem: P(·|G ) may not verify countable additivity =⇒ P(·|G ) may not be a prob. meas.

?Claim: Fix {Fn}∞n=1 disjoint: ∃N null4, S.T. P

 ∞⋃
n=1

Fn|G

 (ω) =
∞∑
n=1

P
(
Fn|G

)
(ω) ∀ ω∈N c

(∵)0 ≤ 1
⋃n

k=1
Fk

(X)↗ 1
⋃∞
k=1

Fk
(X) (used in MCT below)

∞∑
n=1

P
(
Fn|G

)
(ω) Def==

∞∑
k=1

E
[
1Fk(X)|G

] Def== lim
n→∞

n∑
k=1

E
[
1Fk(X)|G

] Disj.== lim
n→∞

E
[
1
⋃n

k=1
Fk

(X)
∣∣G ]

MCT== E
[
1
⋃∞
k=1

Fk
(X)

∣∣G ] Def== P

 ∞⋃
n=1

Fn

∣∣∣G
 (ω) for ω ∈ N c.

? LetA be set of all countable collections of disjoint sets in F : A :=
{
α = {Fn}∞n=1 : Fn ∈ F disj.

}
.

Claim: P(·|G ) might not be count. additive for a.e. ω.

(∵)NEED: Verify count. add. for every countable collection of disjoint sets.

We have only proved that countable additivity holds over Ω \
⋃
α∈A
Nα.

Problem: may have P
( ⋃
α∈A
Nα
)
6= 0 (an uncountable union of null sets may not be null)

Exercise:
Use of Symmetry Let {Xi}ni=1 iid. Then:

(i) E
[
Xi

Sn

]
= 1
n
∀i = 1 . . . n (∵)1 = E

[
Sn
Sn

]
= E

[
X1 + · · ·+Xn

Sn

]
= E

[
X1

Sn

]
+ · · ·+ E

[
Xn

Sn

]
= nE

[
X1

Sn

]
(ii) E

[
Sm
Sn

]
= m

n
, with m ≤ n (∵)E

[
Sm
Sn

]
=

m∑
i=1
E
[
Xi

Sn

]
= m

n

(iii) E
[
Xi|Sn

]
= 1
n
Sn ∀i = 1 . . . n (∵)Sn = E

[
Sn|Sn

]
=E

[
X1 + · · ·+Xn|Sn

]
=

n∑
i=1
E
[
Xi|Sn

]
=nE

[
X1|Sn

]
(iv) E

[
Sm|Sn

]
= m

n
Sn, with m ≤ n (∵)E

[
Sm|Sn

]
=

m∑
i=1
E
[
Xi|Sn

]
= m

n
Sn

4i.e., P (N ) = 0
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Chapter 6

Week 6: Martingales
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6.1 Day 1: Martingales

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Filtration Given (Ω,F ), {Fn}∞n=1: F1 ⊆ F2 ⊆ F3 ⊆ · · · ⊆ F is a filtration. F∞ = σ
(⋃

n Fn

)
.1

Natural Filtration Given {Wn}∞n=1 stochastic process2, natural filt. Fn = σ(W1, . . . ,Wn).

Adapted Process Process X = {Xn}∞n=1 adapted to filtration {Fn}∞n=1 if Xn is Fn-measurable.

Note Usually, X = f(W1, . . . ,Wn), f : (Rn,Bn)→ (R,B), and Fn nat. filt. of W .

Martingale Given a filtered space (Ω,F , {Fn},P): a proc. X is a martingale w.r.t. (Fn,P) ⇔

(i) X adapted: Xn ∈ mFn

(ii) Xn ∈ L1: E
[
|Xn|

]
<∞ ∀n

(iii) E
[
Xn|Fn−1

]

≤ Xn−1 a.s. Supermartingale (SupMG )

= Xn−1 a.s. Martingale (MG )

≥ Xn−1 a.s. Submartingale (SubMG )

Note A process X is a martingale ⇐⇒ X is both a sub/supermartingale.

Note X supermartingale ⇐⇒ −X submartingale.

Note X0 ∈ L1: Xn is a martingale ⇔ X̃n = Xn−X0 is martingale. So WLOG, set X0 = 0.

Previsible Process Process C={Cn}∞n=1 is previsible ⇔ Cn ∈ mFn−1.

Idea Stake on game n: Cn = bet you make at round n-often based on your history
1Alternate notation: F∞ =

∨∞
n=1 Fn.

2A stochastic process W = {Wn}∞n=1 on (Ω,F ) is a sequence of F -measurable r.v.s indexed by n ∈ N.
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Gambling Strategy .
? Bank Account: Xn if bet 1$ per game;

Yn if bet C$
n per game.

? Net Winnings For Unit Bets: round n:

Xn−Xn−1 (bet 1$ per round for each round).

? Total Winnings up to Time n:

Yn =
n∑
k=1

Ck(Xk −Xk−1) =: (C •X)n

Note (C •X)0=0 & Yn−Yn−1=Cn(Xn−Xn−1)

?Martingale Transform of X by C : C•X

Continuous analog: stoch. integr.
∫
C dX

.

MAIN THEOREMS:

Martingale Property X a super/sub/martingale: then ∀ m < n

E
[
Xn|Fm

]

≤ Xm a.s. Supermartingale (SupMG )

= Xm a.s. Martingale (MG )

≥ Xm a.s. Submartingale (SubMG )

(∵)E
[
Xn|Fm

] Tower== E
[
E
[
Xn|Fn−1

]
|Fm

]
prop== E

[
Xn−1|Fm

]
= · · · = E

[
Xm+1|Fm

]
= Xm

Martingale Transform Let C be a previsible process (Cn ∈ Fn−1).

(i) C ≥ 0, C bdd3 X SupMG =⇒ Y := C •X SupMG (null @ 0).

(ii) C bdd, X MG =⇒ Y := C •X MG (null @ 0).

(iii) X ∈ L2 & C ∈ L2 =⇒ (i) & (ii) still hold.

Proof: (click)

E
[
Yn − Yn−1|Fn−1

]
=E

[
Cn(Xn −Xn−1)|Fn−1

]Cn∈Fn−1== CnE
[
Xn −Xn−1|Fn−1

] = 0, X MG ,

≤ 0, X SupMG , C ≥ 0.
.

Integrability |Yn| =

∣∣∣∣∣∣
n∑
k=1

Ck(Xk −Xk−1)

∣∣∣∣∣∣ ≤
n∑
k=1
|Ck||Xk −Xk−1| ∈ L1 if E

[
|Ck||Xk −Xk−1|

]
<∞, ∀k.

Ck bdd (Xk ∈ L1) =⇒ E
[
|Ck||Xk −Xk−1|

]
<∞ ;

Ck, Xk ∈ L2 Cauchy=====⇒
Schwarz

E
[
|Ck||Xk −Xk−1|

]
≤ ‖Ck‖2‖Xk −Xk−1‖2 <∞.

3∃K S.T. Cn(ω) ≤ K,∀n ∈ N, ∀ω ∈ Ω
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Exercise:
(i) Xn ⊥⊥ E [Xi] = 0, Sn = X1 + · · ·+Xn, Fn = σ(X1, . . . , Xn) =⇒ Sn martingale w.r.t. Fn.

Note Interesting Q : When does lim
n→∞

Sn exist? [Kolmogorov 3-Series Theorem]

(ii) Xn ≥ 0 ⊥⊥, E [Xi] = 1, Mn = X1X2 . . . Xn, Fn = σ(X1, . . . , Xn) =⇒ Mn martingale

Note Interesting Q : M∞ := limnMn exists [Martingale Conv. Thm], when E [M∞] = 1? [Kakutani’s Thm]

(iii) Given ξ ∈ L1, filt. Fn, Mn(ω) = E
[
ξ|Fn

]
(ω) =⇒ Mn martingale w.r.t. Fn.

=⇒ This scenario is accumulating info about a r.v.

Note Mn →M∞ = E
[
ξ|F∞

]
[Levy’s Upward Thm]. When is ξ = E

[
ξ|F∞

]
? [Noisy Obs. of a r.v.]

Solution: (click)

(i) E
[
Sn|Fn−1

]
= E

[
Sn−1 +Xn|Fn−1

] Sn∈mFn−1== Sn−1 + E
[
Xn|Fn−1

] Xn⊥⊥Fn−1== Sn−1 + E [Xn] = Sn−1.

(ii) E
[
Mn|Fn−1

]
= E

[
Mn−1Xn|Fn−1

] Mn−1∈mFn−1== Mn−1E
[
Xn|Fn−1

] Xn⊥⊥Fn−1== Mn−1.

(iii) E
[
Mn|Fn−1

]
= E

[
E
[
ξ|Fn

] ∣∣∣Fn−1

]
Tower== E

[
ξ|Fn−1

]
= Mn−1.
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6.2 Day 2: Doob’s Optional Stopping Theorem

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Stopping Time T : Ω→ N ∪ {∞} is a stopping time if
{
ω : T (ω) ≤ n

}
∈ Fn, ∀n ≤ ∞.

Note Equiv. to check {T = n} ∈ Fn, ∀n ≤ ∞.

(∵)
{
ω : T (ω) = n

}
=
{
ω : T (ω) ≤ n

}
\
{
ω : T (ω) ≤ n− 1

}
∈Fn &

{
ω : T (ω) ≤ n

}
=

n⋃
k=0

{
ω : T (ω) = k

}
∈Fn

Idea We stop game right after nth round based on our info at the end of nth round.

Example: {Xn}∞n=1 adapted process, B ∈ B.

T := inf {n ≥ 0 : Xn ∈ B} =⇒ T = stopping time.

Note T = first time Xn hits set B. T =∞ ⇐⇒ Xn never hits B.

(∵){T ≤ n} =
n⋃
k=0

{
ω : Xk(ω) ∈ B

}
∈ Fn, since

{
ω : Xk(ω) ∈ B

}4∈ Fk ⊂ Fn.

T =∞ ⇒ Xn 6= B, ∀n =⇒ {T =∞} =
∞⋂
k=1

X−1
k (Bc) ∈ F∞.

Stopped Process XT := {XT∧n}∞n=0, where T a stopping time, X a process.

.

MAIN THEOREMS:

Stopped MG ’s are MG ’s T stop. time, then ∀n:

=⇒ stopped process XT∧n =


Super MG , and E [XT∧n] ≤ E [X0] if X Super MG

MG , and E [XT∧n] = E [X0] if X MG

Sub MG , and E [XT∧n] ≥ E [X0] if X Sub MG

Proof: (click)

Claim: Cn(ω) = 1T (ω)≥n =⇒ Cn is previsible.

(∵)Cn : Ω→ {0, 1}: need C−1
n ({1}) ∈ Fn−1 and C−1

n ({0}) = C−1
n ({1}c) ∈ Fn−1.

Indeed, {Cn = 1} = {T ≥ n} = {T ≤ n− 1}c ∈ Fn−1.

Claim: XT∧n = (C •X)n +X0
Martingale Transform=============⇒

Theorem
XT∧n is super/sub/MG

(∵)(C •X)n(ω) =
n∑
k=1

Ck(Xk −Xk−1) =
n∑
k=1

1 {T ≥ n} (Xk −Xk−1) =
T∧n∑
k=1

(Xk −Xk−1) = XT∧n−X0.

4Xk : (Ω,F )→ (R,B), Fk meas. (adapted proc.) =⇒ X−1
k

(B) ∈ Fk, ∀B ∈ B, ∀k ∈ N.
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Careful! E [XT∧n] = E [X0] ∀n 6=⇒ E [XT ] = E [X0] in general

(∵)Random Walk over Z: T = inf {n ≥ 0 : Xn = 1}

=⇒ E [XT∧n] = 0 = E [X0] ∀n but E [XT ] = 1 6= 0 = E [X0].

Note P (T <∞) = 1 but E [T ] =∞ (later)

Idea Know E [XT∧n] ≤ E [X0]. Want to understand when E [XT ] ≤ E [X0]. Under some

’nice’ conditions, XT∧n
a.s.−→ XT and E[·]’s converge, too.

Doob’s Optional Stopping Thm (OPT) T = stop. time, X = SupMG /MG . If either holds:

(i) T bounded: ∃B > 0 s.t. T (ω) ≤ B a.s. .

(ii) T <∞ a.s. & ∃Y ∈ L1 S.T. |Xn(ω)| ≤ Y ∀(n, ω)

(iii) E [T ] <∞ & ∃B > 0 S.T. |Xn+1(ω)−Xn(ω)| ≤ B ∀(n, ω)

(iv) X ≥ 0 SupMG & T <∞ a.s.

=⇒ XT integrable & E [XT ] ≤ E [X0] or E [XT ] = E [X0]

Proof: (click)

We know: E
[
|XT∧n|

]
<∞ & E [XT∧n] ≤ E [X0] (∗) always holds for any X SupMG & T stop. time.

(i) Take n ≥ B =⇒ E [XT ] = E
[
X T∧n︸︷︷︸

=T

]
≤ E [X0].

(ii) T <∞ a.s. =⇒ XT∧n
T (ω)∧n a.s.−→T (ω)−−−−−−−−−−→ XT (ω)(ω) a.s. , |Xn| ≤ Y

DCT===⇒ E [XT ] ≤ E [X0].

(iii) XT∧n −X0=
T∧n∑
k=1

Xk −Xk−1 =⇒ |XT∧n −X0|≤
T∧n∑
k=1
|Xk −Xk−1|≤B(T ∧ n)≤BT DCT===⇒ E [XT ]≤E [X0]

(iv) Yn :Xn≥0== XT∧n ≥ 0, Yn
a.s.−→ XT

Fatou===⇒ E [XT ] = E
[

lim
n→∞

Yn

]
≤ lim inf

n→∞
E [XT∧n] ≤(∗) E [X0].

Stopping Time Calculus T1, T2 stop. times =⇒ T1 ∧ T2, T1 ∨ T2, T1 + T2 are stop. times.

(∵){T1 ∧ T2 ≤ n} = {T1 ≤ n} ∪ {T1 ≤ n} ∈ Fn

(∵){T1 + T2 = n} =
n⋃
k=0
{T1 = k} ∩ {T2 = n− k} ∈ Fn.

Corollary: T stop. time =⇒ TM = T ∧M stop time, for any M ∈ N.

Note If T <∞ a.s. , TM
a.s.−→ T & TM bdd.

Stopped σ-algebra τ= stopping time: Fτ :=
{
A ∈ F∞ : A ∩

{
ω : τ(ω) ≤ n

}
∈ Fn,∀n

}
Note Fτ=σ-field & Xτ ∈ mFτ
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Truncated Martingale Prop Xn SupMG , k ∈ R =⇒ Yn := Xn ∧ k is SupMG .

Proof: (click)

E
[
Yn|Fn−1

]
=E

[
Xn ∧ k|Fn−1

]
≤min

{
E
[
Xn|Fn−1

]
,E
[
k|Fn−1

]}
=min

{
E
[
Xn|Fn−1

]︸ ︷︷ ︸
≤Xn−1

, k
}
≤Yn−1

Alt.Proof of Doob OPT (iv) indexMartingales!Doob!Optional Stopping Thm X≥0 SupMG &

T<∞ a.s. =⇒ XT∈L1 & E [XT ]≤E [X0]

Proof: (click)

Xn SupMG , k ∈ R Truncated======⇒
MG

Yn := Xn ∧ k is SupMG .

Now, TM = T ∧M stop. time =⇒ Yn = XTM∧n SupMG Lemma====⇒ Zn = Yn ∧ k = XTM∧n ∧ k SupMG .

E [Zn] ≤ E [Z0] = E [X0 ∧ k] =⇒ E
[
XTM∧n ∧ k

]
≤ E [X0 ∧ k] n ≥M====⇒ E

[
XTM ∧ k

]
≤ E [X0].

XTM ∧ k
a.s.−→ XT ∧ k (as M →∞) & |XTM ∧ k| ≤ k

DCT===⇒ E [XT ∧ k] ≤ E [X0 ∧ k].

0 ≤ XT ∧ k ↗ XT (as k →∞) MCT===⇒ E [XT ] ≤ E [X0].

Two Stopping Times T, S two stop. times S.T. S ≤ T =⇒ E [XT∧n] ≤ E [XS∧n].

Corollary: T & S bounded, S ≤ T a.s. =⇒ E [XT ] ≤ E [XS ].

Proof: (click)

Claim: Cn := 1(S,T ](n, ω) = 1
{
S(ω) < n ≤ T (ω)

} a.s.== 1 {T ≥ n} − 1 {S ≥ n} is previsible.

(∵)Cn : Ω→ {0, 1} =⇒ check C−1
n ({1}) = {S < n} ∩ {n ≤ T} = {S ≤ n− 1} ∩ {T ≤ n− 1}c ∈ Fn−1.

Claim: XT∧n −XS∧n is a SupMG =⇒ E [XT∧n −XS∧n] ≤ 0.

(∵)XT∧n −XS∧n = (C •X)n is SupMG as Cn previsible.

Note Corollary follows from Doob’s OPT (i).

OPT Corollary M a MG : C previsible, T a stopping time, S.T.

E[T ] <∞, C bounded, and |Mn −Mn−1| bounded =⇒ E
[
(C •M)T

]
= 0

Proof: (click)

Let Yn := (C •M)n =
n∑
k=1

Ck(Xk −Xk−1). WANT: E [YT ] = 0. E [YT∧n] = E [Y0] = 0

YT∧n =
T∧n∑
k=1

Ck(Xk −Xk−1) =⇒ |YT∧n| ≤
T∧n∑
k=1
|Ck|︸︷︷︸
bdd

· |(Xk −Xk−1)|︸ ︷︷ ︸
bdd

≤ B · T (∃B > 0 bound)

Doob===⇒
OPT

E [YT ] = E [Y0] = 0.
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Finite E [T]: T =stop. time: ∃N, ε > 0 S.T. P
(
T ≤ n+N |Fn

)
> ε a.s. ∀n =⇒ E [T ] <∞

Idea Use it to prove E [T ] <∞ for Doob’s OPT.

Proof: (click)

P (T > kN) = P
(
T > kN ∩ T > (k − 1)N

)
= P

(
T > kN |T > (k − 1)N

)︸ ︷︷ ︸
=P(T>kN |F(k−1)N)

P
(
T > (k − 1)N

)
P (T > kN) ≤ (1− ε)P

(
T > (k − 1)N

)
≤ · · · ≤︸ ︷︷ ︸
induction

(1− ε)k−1P (T > N) = (1− ε)k−1 P
(
T > N |F0 = {∅,Ω}

)︸ ︷︷ ︸
≤(1−ε)

.

P
(
T
N > k

)
≤ (1− ε)k Trick===⇒

T ≥ 0
E
[
T

N

]
=
∞∑
k=0

P
(
T

N
> k

)
≤
∞∑
k=0

(1− ε)k <∞ N finite=====⇒
constant

E [T ] <∞
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Exercise:

{Xn}∞n=1iid∼X=

 +1, w.p.1/2,

−1, w.p.1/2.
Sn =

∞∑
k=1

Xk (with S0 = 0), Fn = σ(X1, . . . , Xn) = σ(S0, S1, . . . , Sn).

T = inf {n ≥ 0 : Sn = 1} =⇒ P (T =∞) = 0 while E [T ] =∞.

Solution: (click)

Let Mθ
n = (sech θ)neθSn , where sech θ = 1

cosh θ = 2
eθ + e−θ

= 1
E
[
eθXn

] .
Claim: Mθ

n is a MG .

(∵)Mθ
n =

n∏
i=1

X̃i, where X̃i = eθXi

E
[
eθX

] unit mean, indep & use Product Martingale Exercise.

Claim: E
[
Mθ
T∧n

]
= 1

(∵)MT∧n is MG =⇒ E
[
Mθ
T∧n

]
= E

[
Mθ
T∧0
]

= 1

Claim: E
[
Mθ
T

]
= 1 = E

[
(sech θ)T eθ

]
.

(∵)θ > 0 ⇒ eθST∧n ≤ eθ sech θ < 1======⇒ Mθ
T∧n ≤ eθ

Claim: E
[
(sech θ)T

]
= e−θ (for θ > 0)

(∵)1 = E
[
(sech θ)T eθ

]
= eθE

[
(sech θ)T

]
Claim: P (T <∞) = 1.

(∵)(sech θ)T −−−→
θ↘0

1 {T <∞} and BCT===⇒ 1 = E
[
1 {T <∞}

]
= P (T <∞) = 1

Claim: E [T ] =∞.

(∵)1 = E [ST ] = E
[
E
[
ST |σ(T )

]]
= E

[
TE [Xi]

]
= E [Xi]︸ ︷︷ ︸

=0

E [T ]. E [T ] <∞ ⇒ contradiction!

(∵)[Wald’s Identity] E
[∑T

i=1Xi|σ(T )
]

= TE [Xi]

Claim: α = sech θ =⇒ E
[
αT
]

=
∞∑
n=1

αnP (T = n)
E[(sech θ)T ]=e−θ

== e−θ
Claim!== 1−

√
1− α2

α

Corollary: P (T = 2m− 1) = (−1)m+1
(

1/2
m

)
(∵)Recursion: from X0 = 0 go to X1 = ±1 w.p. 1

2
=⇒ f(α) := E

[
αT
]

= 1
2 E

[
αT |X1 = 1

]
︸ ︷︷ ︸

so T=1

+1
2E
[
αT |X1 = −1

]
= 1

2α+ 1
2E
[
αT |X1 = −1

]
Now let T1 = inf

{
n ≥ 0 : Sn = 0|X0 = −1

}
& T2 = inf

{
n ≥ 0 : Sn = 1|X0 = 0

}
:

Then E
[
αT |X1 = −1

]
= E

[
α1+T1+T2 |X1 = −1

]
= αE

[
αT1 |X1 = −1

]
E
[
αT2 |X1 = 0

]
=⇒ f(α) = 1

2α+ 1
2αf(α)2 =⇒ f(α) = 1±

√
1− α2

α
but the “+” cannot hold:

(∵)1 +
√

1− α2 ≥ 1 & 1
α ≥ 1 =⇒ 1 +

√
1− α2

α
≥ 1, but f(α) = e−θ

θ > 0===⇒ f(α) ≤ 1.
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6.3 Day 3: Martingale Convergence Theorem

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

{Xn} Bounded in L1 sup
n≥1

E
[
|Xn|

]
<∞ ⇐⇒ ∃B > 0 S.T. E

[
|Xn|

]
< B

Number of Upcrossing UN [a, b](ω) = k if ∃s1, . . . , sk & t1, . . . , tk S.T. :

0 ≤ s1 < t1 < · · · < sk < tk ≤ N & Xsi < a, Xti > b, ∀i ∈ {1, . . . , k}.

.

MAIN THEOREMS:

SupMG Boundedness {Xn} SupMG is bounded in L1 ⇐⇒ X−n is bounded in L1.

Note For SubMG : ⇐⇒ X+
n is bounded in L1.

Corollary: {Xn} SupMG : Xn ≥ 0 =⇒ bdd in L1 (∵)E
[
|Xn|

]
= E [Xn] ≤ E [X0].

Proof: (click)

E [Xn] + E
[
X−n
]

= E
[
X+
n

]
=⇒ E

[
|Xn|

]
= E

[
X+
n

]
+ E

[
X−n
]

= 2E
[
X−n
]

+ E [Xn] ≤ 2E
[
X−n
]

+ E [X0]

since SupMG & E
[
|Xn|

]
≥ E

[
X−n
]
.

Useful Ineq. LetX SupMG& C previsible:

 C1 = 1 {X0 < a}

Cn = 1 {Xn−1 < a}1 {Cn−1 = 0}+ 1 {X0 ≤ b}1 {Cn−1 = 1}
=⇒ Yn := (C •X)n SupMG & YN (ω) ≥ (b− a)UN [a, b](ω)− (XN − a)−.

Note C corresponds to betting once hit below a, until hit b

Proof: (click)

Let UN [a, b](ω) = k. Define

 s1 = inf {n ≥ 1 : Xn < a}

t1 = inf {n ≥ s1 : Xn > b}
&

 si = inf {n ≥ ti−1 : Xn < a}

ti = inf {n ≥ si : Xn > b}
=⇒ 1 ≤ s1 < t1 < · · · < sk < tk ≤ N ∀i ∈ {1, . . . , k} & Cj = 1 ∀si + 1 ≤ j ≤ ti.

Also, let sk+1 = inf {n ≥ tk : Xn ≤ a} ∧N

YN =
N∑
t=1

Ct(Xt −Xt−1) =
k∑
i=1

ti∑
j=si+1

(Xj −Xj−1)︸ ︷︷ ︸
=Xti−Xsi≥(b−a)

+
N∑

j=sk+1+1
(Xj −Xj−1)

=⇒ YN ≥ (b− a)k +
N∑

j=sk+1+1
(Xj −Xj−1) = (b− a)k +XN −Xsk+1 ≥ (b− a)k − (XN − a)−.
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.

C = 1 for • & C = 0 for ◦.

.

Doob’s Upcrossing Lemma Xn SupMG =⇒ (b− a)E
[
UN [a, b]

]
≤ E

[
(XN − a)−

]
.

Corollary: Xn SupMG bdd in L1, U∞[a, b](ω) =
{

number of upcrossings in
{
Xn(ω)

}∞
n=1

}
:

=⇒ (b− a)E
[
U∞[a, b]

]
≤ E

[
(XN − a)−

]
≤ |a|+ sup

n≥1
E
[
|Xn|

]
=⇒ P

(
ω : U∞[a, b](ω) =∞

)
= 0

Proof: (click)

Take expectation in Yn (defined above) and use E [Yn] ≤ E [Y0] = 0.

For corollary, observe: 0 ≤ UN [a, b](ω)↗ U∞[a, b](ω) & use MCT.

Doob’s Forward Conv. Thm Xn SupMG bounded in L1 (sup
n
E
[
X−n
]
<∞)

=⇒ X∞ := lim
n→∞

Xn exists, Xn
a.s.−→ X∞ & P (X∞ <∞) = 1.

Note Xn ∈ mFn ⊆ F∞ =⇒ Xn ∈ mF∞ =⇒ X∞ ∈ mF∞.

Corollary: Xn ≥ 0 SupMG =⇒ limn→∞Xn = X∞ exists a.s.

Proof: (click)

Let A :=
{
ω ∈ Ω : lim

n→∞
Xn(ω) doesn’t exist in R̄

}
=
{
ω ∈ Ω : lim inf

n→∞
Xn(ω) < lim sup

n→∞
Xn(ω)

}
Trick:
==

⋃
(a,b)∈Q2

{
lim inf
n→∞

Xn(ω) < a < b < lim sup
n→∞

Xn(ω)
}

︸ ︷︷ ︸
:=Aa,b

.

lim inf < a⇒ Xn < a i.o.

lim sup > b⇒ Xn > b i.o.

 =⇒ Aa,b ⊆
{
ω ∈ Ω : U∞[a, b](ω) =∞

}
Upcrossing======⇒
Corollary

P
(
Aa,b

)
= 0 =⇒ P (A) = P

({
ω ∈ Ω : lim

n→∞
Xn(ω) doesn’t exist in R̄

})
= 0

=⇒ X∞ = lim
n→∞

Xn(ω) exists.

E
[
|X∞|

]
= E

[
lim
n→∞

|Xn|
]

= E
[
lim inf
n→∞

|Xn|
]
≤︸︷︷︸

FATOU

lim inf
n→∞

E
[
|Xn|

]
≤ sup

n
E
[
|Xn|

]
<∞.
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Careful! Xn
a.s.−→ X∞ 6=⇒ Xn

L1

−−→ X∞

Exercise:
Sn =Simple Symmetric Random Walk: S0 = 1, Sn = Sn−1 +Xn (Xn iid).

Show T := inf {n ≥ 1 : Sn = 0} =⇒ ST∧n
a.s.−→ S∞ but not in L1.

Solution: (click)

Yn := ST∧n ≥ 0 Doob=====⇒
Forward

Yn
a.s.−→ Y∞ & E [Yn] = E [ST∧n] MG== E [S0] = 1.

Fix ω ∈ Ω. Yn(ω) conv. & integer =⇒ ∃N ∈ N: Yn(ω) fixed for n ≥ N .

If fixed 6= 0 =⇒ Yn+1 = Yn ± 1 not fixed!

Exercise:
Xn ≥ 0 iid, E [Xn] = 1, P (Xn = 1) < 1 & Mn = X1 · · ·Xn.

=⇒ Mn
a.s.−→ 0 & 1

n
logMn

a.s.−→ c < 0.

Solution: (click)

Mn product MG , Mn ≥ 0 MG==⇒
CT

Mn
a.s.−→M∞. WANT: M∞ = 0, a.s.

Suppose ∃F ⊂ Ω S.T. P (F ) > 0 & M∞ 6= 0 on F ⇒ ∀ω ∈ F : Xn(ω) = Mn(ω)
Mn−1(ω)

a.s.−→ 1.

Kolmogorov=======⇒
0-1 Law

P
(
ω : lim

n→∞
Xn exists

)
∈ {0, 1} & P

(
ω : lim

n→∞
Xn exists

)
≥ P (F ) > 0

=⇒ P
(
ω : lim

n→∞
Xn exists

)
= 1. Also, lim

n→∞
Xn ∈ mτ (tail) =⇒ constant a.s. =⇒ lim

n→∞
Xn = 1.

P
(
|Xn − 1| ≤ 1

k

)
k→∞−−−−→ P

(
|Xn − 1| = 0

)
= 0, hence ∃k: P

(
|Xn − 1| ≤ 1

k

)
< 1.

Let δ = 1
k

, and P
(
|Xn − 1| ≤ δ

)
< 1 can’t conv to 1, contradiction!

1
n

logMn = 1
n

n∑
k=1

logXk
SLLN−−−−→

a.s.
E [logX] <︸︷︷︸

Jensen

logE [X] = 0.
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Chapter 7

Week 7: L2 Martingales &

Uniform Integrability
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7.1 Day 1: Martingales Bounded in L2

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Bounded in L2 Xn Sup/Sub/MG bdd in L2 ⇐⇒ sup
n
E[|Xn|2] <∞

Note bdd in L2 ‖ · ‖1 ≤ ‖ · ‖2========⇒ bdd in L1.

Oscillation ω: Sequence an: ωan = lim sup
n

an − lim inf
n

an.

Function f (at pt x0): ωf (x0) = lim
ε→0

(
sup

y∈B(x0,ε)
f(y)− inf

y∈B(x0,ε)
f(y)

)
= inf
ε>0

(
sup

y∈B(x0,ε)
f(y)− inf

y∈B(x0,ε)
f(y)

)
Note ω <∞: finite oscillation ; ω <∞: infinite oscillation (∞−∞ case undefined)
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.

MAIN THEOREMS:

Orth. of Increments Mn ∈ L2 MG , a ≤ b ≤ c ≤ d ∈ N =⇒ 〈Md −Mc,Mb −Ma〉 = 0.

Corollary: Mn = M0+
n∑
k=1

(Mk −Mk−1)︸ ︷︷ ︸
orth. terms

Pythagoras=======⇒ E
[
M2
n

]
= E

[
M2

0
]
+

n∑
k=1

E
[
(Mk −Mk−1)2

]

Proof: (click)

E
[
Md −Mc|Fb

]
= E

[
Md|Fb

]
− E

[
Mc|Fb

]
= Mb −Mb = 0 & Mb −Ma ∈ L2(Ω,Fb,P)

Orth. Proj.=======⇒Md −Mc − E
[
Md −Mc|Fb

]
⊥ (Mb −Ma) =⇒ 〈Md −Mc,Mb −Ma〉 = 0.

L2 Boundedness Mn ∈ L2 MG : M bdd in L2 ⇐⇒
∞∑
k=1

E
[
(Mk −Mk−1)2

]
<∞.

L2 Convergence Mn ∈ L2 MG : M bdd in L2 =⇒ Mn →M∞ both a.s. & in L2.

Proof: (click)

Mn bdd L2 =⇒ Mn bdd L1 MG==⇒
CT

Mn
a.s.−→M∞ & P (M∞ <∞) = 1.

E
[
(Mm −Mn)2]= n∑

k=m+1
E
[
(Mk −Mk−1)2

]
m→∞−−−−→
n→∞

0 (L2 MG boundedness)

Way 1: Fatou===⇒ E
[
(Mm −M∞)2] ≤ ∞∑

k=m+1
E
[
(Mk −Mk−1)2

]
m→∞−−−−→ 0 =⇒ Mn →M∞ a.s. & in L2

Way 2: L2 MG=======⇒
boundedness

{Mn}∞n=1 is Cauchy in L2 L2 is=====⇒
complete

∃M̃ S.T. Mn
L2

−−−−→
n→∞

M̃

Now: P
(
|M̃ −M∞| > ε

)
≤ P

(
|M̃ −Mn| >

ε

2

)
︸ ︷︷ ︸
≤ E[|Mn−M̃|2]

(ε/2)2 →0

+P
(
|Mn −M∞| >

ε

2

)
︸ ︷︷ ︸

→0

→ 0
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Sum of 0-Mean Indep r.v.s in L2 Xi ⊥⊥ S.T. E [Xi] = 0 & E
[
X2
i

]
= σ2

i .

(i)
∑
k

σ2
k <∞ =⇒

∑
k

Xk(ω) <∞ a.s.

(ii) ∃K > 0 S.T. |Xn(ω)| ≤ K, ∀n, ∀ω:∑
k

Xk <∞ a.s. =⇒
∑
k

σ2
k <∞.

Note By Kolmogorov 0-1 Law, P

ω :
∑
k

Xk(ω) converges

 ∈ {0, 1}.
Proof: (click)

Mn := X1 + . . . Xn & Mn MG and ∈ L2. Fn = σ(X1, . . . , Xn)a & F0 = {∅,Ω}.

(i)
∑
n

E
[
(Mn −Mn−1)2

]
=
∑
n

E
[
X2
n

]
=
∑
n

σ2
n <∞

L2

=======⇒
Convergence

Sn
a.s.−→ S & S <∞ a.s.

(ii) Gn = M2
n −

n∑
k=1

σ2
k.

Claim: Gn is MG .

(∵)E
[
Gn|Fn−1

]
= E

(Mn−1 +Xn)2 −
n∑
k=1

σ2
k

∣∣∣Fn−1

 = E

M2
n−1 + 2Mn−1Xn +X2

n −
n∑
k=1

σ2
k

∣∣∣Fn−1


= M2

n−1 + 2Mn−1 E
[
Xn|Fn−1

]︸ ︷︷ ︸
=E[Xn]=0

+E
[
X2
n|Fn−1

]
︸ ︷︷ ︸

=E[X2
n]=σ2

n

−
n∑
k=1

σ2
k = M2

n−1 −
n−1∑
k=1

σ2
k = Gn−1.

Claim: ∃c > 0 S.T. Tc := inf
{
n ≥ 1 : |Mn| > c

}
& P (Tc =∞) > 0.

(∵)Suppose, ∀c > 0, P (Tc =∞) = 0 =⇒ ∀c, ∀ω, ∃n(c, ω) ≥ 1 : |Mn(ω)| > c =⇒ lim sup
n
|Mn| =∞.

However, Mn(ω) conv =⇒ |Mn(ω)| is bdd =⇒ lim sup
n
|Mn(ω)| <∞.

Claim: |MTc∧n| ≤ K + c for every n.

(∵)

 Tc ≥ n =⇒ |MTc∧n| = |Mn| ≤ c

Tc ≤ n =⇒ |MTc∧n| = |MTc | ≤ |MTc −MTc−1|+ |MTc−1| ≤ K + c

Claim:
∞∑
k=1

σ2
k <∞

(∵)GTc∧n is MG =⇒ 0 = E [GTc∧n] = E
[
M2
Tc∧n

]
− E

Tc∧n∑
k=1

σ2
k

 |MTc∧n|=====⇒
≤ K + c

E

Tc∧n∑
k=1

σ2
k

 ≤ (K + c)2.

Hence, (K + c)2 ≥ E

Tc∧n∑
k=1

σ2
k

 = E

Tc∧n∑
k=1

σ2
k

∣∣∣Tc =∞

P (Tc =∞) + E

Tc∧n∑
k=1

σ2
k

∣∣∣Tc <∞
P (Tc <∞)

=⇒ (K + c)2 ≥ E

Tc∧n∑
k=1

σ2
k

∣∣∣Tc =∞

P (Tc =∞) =

 ∞∑
k=1

σ2
k

P (Tc =∞) =⇒
∑
k

σ2
k <∞.

aNatural filtration of the process.
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Random Signs εn ∼ ±1, w.p. 1/2 & {an}∞n=1 ∈ R non-random.

(i)
∑
n

anεn <∞ a.s. ⇐⇒
∑
n

σ2
n <∞

(ii)
∑
n

σ2
n =∞ =⇒

∑
n

anεn oscillates infinitely.

Careful! We don’t know (TLTC1) if we can allow the random sum can converge to ∞.

Proof: (click)

(i) σ2 = Var (anεn) = a2
nVar (ε) = a2

n =⇒
∑
n

σ2
n <∞

Prev.====⇒
Result

∑
n

anεn.

&
∑

anεn <∞ =⇒ |anεn| = |an| → 0 =⇒ an bdd. Prev. result.

(ii) GOAL: Prove that lim sup
n→∞

n∑
k=1

akεk − lim inf
n→∞

n∑
k=1

akεk =∞, a.s. .

Kolmogorov’s 0-1 Law =⇒ P

lim sup
n→∞

n∑
k=1

akεk <∞

 ∈ {0, 1} & P

lim inf
n→∞

n∑
k=1

akεk > −∞

 ∈ {0, 1}
Only case to eliminate:a P

lim sup
n→∞

n∑
k=1

akεk <∞

 = 1 & P

lim inf
n→∞

n∑
k=1

akεk > −∞

 = 1.

Claim: Under assumptions above, an bounded.

(∵)Let Mn =
n∑
k=1

akεk. Fix ω S.T. lim sup
n→∞

Mn(ω) = L <∞ & lim inf
n→∞

Mn(ω) = N > −∞.

Take ε > 0: ∃N S.T. n ≥ N =⇒ Mn ≤ L+ ε & Mn ≥ N − ε

=⇒ L+ ε ≥Mn ≥ N − ε,∀n ≥ N =⇒ |Mn −Mn+1| = |an+1| ≤ L−N + 2ε, ∀n ≥ N . Hence, an bdd.

Claim: lim
n→∞

Mn(ω) exists, a.s.

(∵)Take an ω, lim sup
n→∞

Mn(ω) <∞ =⇒ ∃B > 0 S.T. Mn(ω) ≤ B, ∀n.

Define stop. time T := inf {n ≥ 1 : Mn > B}:

MT∧n ≤MT −MT−1 +MT−1 ≤ |aT |+B ≤ sup
n≥1
|an|+B. MG==⇒

CT
MT∧n

a.s.−→M∞ with P (M∞ <∞) = 1.

For ω above, T (ω) =∞ =⇒ Mn(ω) a.s.−→M∞(ω) ⇒⇐ (
∑
n a

2
n =∞ =⇒ can’t converge).

Note Above, we ‘proved’ that if Mn MG S.T. |Mn −Mn−1| ≤ K

Then lim sup
n→∞

Mn <∞ a.s. or lim inf
n→∞

Mn > −∞ a.s. =⇒ Mn
a.s.−→M∞.

aThe ∞−∞ case is not allowed by the definition.

1Too Lazy To Check
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Symmetrization Technique: Expanding the Sample Space .

(Ω∗,F ∗,P∗) = (Ω,F ,P)× (Ω̃, F̃ , P̃), where (Ω̃, F̃ , P̃) is an exact copy of (Ω,F ,P).

Let ω∗ = (ω, ω̃) ∈ Ω∗:

 X∗n(ω∗) = Xn(ω)

X̃∗n(ω∗) = X̃n(ω̃)
& Z∗n(ω∗) := X∗n(ω∗)− X̃∗n(ω∗)

=⇒ Then: {Z∗n}
∞
n=1 are indep, with

 E [Z∗n] = 0

Var (Z∗n) = 2Var (Xn)

Proof: (click)

Claim: X∗n ⊥⊥ X̃∗m.

(∵)PX∗n,X̃∗m(·, ·): B×B→[0, 1] P-meas. (check on π-syst {B1 ×B2 : B1, B2 ∈ B} gen. B×B)

PX∗n,X̃∗m(B1, B2) = P∗
(
ω∗ : X∗n(ω∗) ∈ B1, X̃

∗
m(ω∗) ∈ B2

)
= P∗

(
(ω, ω̃) : Xn(ω) ∈ B1, X̃m(ω̃) ∈ B2

)
.

A :=
{
ω : Xn(ω) ∈ B1

}
∈ F & B :=

{
ω : X̃m(ω) ∈ B2

}
∈ F̃ .

Uniq. of=======⇒
Prod. Meas.

P∗ (A×B) = P(A)P̃(B) = P (Xn ∈ B1) P̃(X̃m ∈ B2) = P∗X∗n(B1)P∗
X̃∗m

(B2).

Claim: E [Z∗n] = 0 & Var (Z∗n) = 2Var (Xn)

(∵)

 E
[
Z∗n(ω∗)

]
= E

[
X∗n(ω∗)

]
− E

[
X̃∗n(ω∗)

] copy== 0

Var
(
Z∗n(ω∗)

) ⊥⊥== Var
(
X∗n(ω∗)

)
+ Var

(
X̃∗n(ω∗)

)
= 2Var (Xn)

Conv implies E [·] & Var (·) Conv Xn ⊥⊥ & ∃K > 0 S.T. |Xn(ω)| ≤ K,∀n, ω.∑
n

Xn converges a.s. =⇒
∑
n

E [Xn] converges &
∑
n

Var (Xn) <∞.

Note This is a partial converse to Kolmogorov’s 2-Series Theorem.

Proof: (click)

Take Z∗n defined in symmet. technique above. E [Z∗n] = 0 & Var (Z∗n) = 2Var (Xn) & |Z∗n| ≤ 2K (∀n, ∀ω).

G :=
{
ω ∈ Ω :

∑
n

Xn(ω) conv
}

& G̃ :=
{
ω̃ ∈ Ω̃ :

∑
n

X̃n(ω̃) conv
}

=⇒ P (G) = P̃(G̃)=1 =⇒ P∗(G×G̃)=1

On G× G̃,
∑
n

Z∗n(ω∗) =
∑
n

Xn(ω)− X̃n(ω̃) conv =⇒ P∗(ω∗ :
∑
n

Z∗n conv) = 1.

Sum of 0-Mean==========⇒
L2 ⊥⊥r.v.s (b)

∑
n

Var (Xn) =
∑
n

σ2
n <∞.

Sum of 0-Mean==========⇒
L2 ⊥⊥r.v.s (a)

∑
n

(Xn − E [Xn]) <∞ =⇒
∑
n

E [Xn] <∞.
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Kolmogorov’s 3-Series (⊥) {Xn ⊥⊥}, A > 0 & Yi = Xi1|Xi|≤A: Then
∞∑
n=1

Xn converges a.s. ⇔

(i)
∞∑
n=1

P
(
|Xn| > A

)
<∞

(ii)
∞∑
n=1

E [Yn] <∞

(iii)
∞∑
n=1

Var (Yn) <∞.

Note (Technical) Above holds if there is an A. In this case, it holds for any A 2.

Proof: (click)

(⇐) Done: Kolmogorov’s 3-Series Theorem.

(⇒)
∑
n

Xn(ω) < ∞ a.s. =⇒ Xn
a.s.−→ 0 =⇒ ∀K P

(
|Xn| > K i.o.

)
= 0 BC==⇒

1&2

∞∑
n=1

P
(
|Xn| > K

)
< ∞.

Cesaro’s Lemma an ↗∞ & xn → x∞ =⇒ 1
an

n∑
k=1

(ak − ak−1)xk → x∞.

Note Taking an = n, get standard Cesaro mean.

(∵)See Williams [13] p.117.

Kronecker’s Lemma an ↗∞ &
∞∑
n=1

xn
an

<∞ =⇒ 1
an

n∑
k=1

xk → 0.

(∵)See Durrett [5] p.81; Williams [13] p.117. Use Cesaro.

2Aut Caesar, aut nullus
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7.2 Day 2: Doob Decomposition, Angle Brackets Process

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Angle-Bracket Process M ∈ L2 MG & M0 = 0. M2
n SubMG & M2

n = Nn+An (Doob decomp.).

=⇒ A = 〈M〉. Will study A for convergence of Mn.

Note Doob=====⇒
Decomp

A = 〈M〉 is ↗ and has limit A∞

.

MAIN THEOREMS:

Doob Decomposition Given filtration {Fn} & adapted process {Xn} ∈ L1:

∃ decomp. Xn = X0 +Mn +An with



Mn MG , Mn =
n∑
k=1

Xk − E
[
Xk|Fk−1

]
An previsible, An =

n∑
k=1

E
[
Xk|Fk−1

]
−Xk−1

M0 = A0 = 0
If Xn = X0 +M ′n +A′n =⇒ Mn = M ′n & An = A′n a.s. , ∀n.

Corollary: Xn is a SubMG ⇐⇒ An ↗

Note An accumulates expected increase & Mn accumulates surprises.

Note Doob-Meyer Decomposition generalizes this for continuous time.

Proof: (click)

WLOG X0 = 0 (otherwise, take X̃n = Xn −X0)

E
[
Xn|Fn−1

]
=E

[
Mn +An|Fn−1

]
=Mn−1 +An = Xn−1−An−1 +An ⇒ An−An−1 = E

[
Xn|Fn−1

]
−Xn−1.

=⇒ An =
n∑
k=1

E
[
Xk|Fk−1

]
−Xk−1 =⇒ Mn =

n∑
k=1

Xk − E
[
Xk|Fk−1

]
.

Corollary: Xn SubMG ⇐⇒ E
[
Xn|Fn−1

]
−Xn−1 ≥ 0 ⇐⇒ An ↗.
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Function of an MG Xn process, ϕ(·) function S.T. E
[
|ϕ(Xn)|

]
<∞,∀n

=⇒


Xn MG , ϕ(·) convex =⇒ ϕ(Xn) = SubMG

Xn MG , ϕ(·) concave =⇒ ϕ(Xn) = SupMG

Xn SubMG , ϕ(·) cvx + increasing =⇒ ϕ(Xn) = SubMG

Proof: (click)

E
[
Xn|Fn−1

]
= Xn−1 =⇒ E

[
ϕ(Xn)|Fn−1

]
≥︸︷︷︸

Jensen

ϕ(E
[
Xn|Fn−1

]
) ≥ ϕ(Xn−1)

σ(ϕ(Xn)) ⊂ σ(Xn) ⊂ Fn =⇒ ϕ(Xn) ∈ mFn & E
[
|ϕ(Xn)|

]
<∞

=⇒ ϕ(Xn) SubMG . Other cases are analogous.

Angle-Brackets Process A = 〈M〉: An ↗ A∞ exists (∞ allowed).

M bdd in L2 ⇐⇒ E [A∞] <∞.

An −An−1 = E
[
M2
n −M2

n−1|Fn−1
]

= E
[
(Mn −Mn−1)2|Fn−1

]
.

Note A is useful in studying the martingale. For examples, see Williams [13].

Proof: (click)

M2
n SubMG =⇒ 0 ≤ An ↗

monotonic======⇒ A∞ exists.

E
[
M2
n

]
= E [An] + E [Nn] = E [An] =⇒ sup

n
E
[
M2
n

]
= sup

n
E [An] = E [A∞].

Last item: plug & check.

Interpretation of A-B Process A-B process called quadratic variation: An−An−1 = Var
(
Xn|Fn−1

)
,

hence An accumulates sum of variation in process.

(∵)An =
∞∑
n=1

E
[
X2
n|Fn−1

]
−X2

n−1 and Xn−1 = E
[
Xn|Fn−1

]
=⇒ An−An−1=E

[
X2
n|Fn−1

]
−
(
E
[
Xn|Fn−1

])2
=E

[(
Xn − E

[
Xn|Fn−1

])2
|Fn−1

]
=Var

(
Xn|Fn−1

)
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Convergence of M ↔ finiteness of A∞ A := 〈M〉

(i) For a.a ω: “A∞(ω) <∞ =⇒ lim
n
Mn(ω) exists and is finite” 3.

(ii) ∃K > 0 S.T. |Mn(ω)−Mn−1(ω)| ≤ K, ∀n, ω4:

=⇒ For a.a ω: “lim
n
Mn(ω) =⇒ A∞(ω) <∞ exists”.

Note This is an extension of Sum of 0-Mean L2 ⊥⊥r.v.s.

Proof: (click)

Can’t use Doob’s Conv. Thm.: Look at pointwise stuff, not L2/L1 bounded stuff. A∞ <∞ 6=⇒ E [A∞] <∞.

(i) Claim: Tk = inf {n ≥ 1 : An+1 > k} =⇒ {ω ∈ Ω : A∞ <∞} =
∞⋃
k=1
{Tk =∞}.

(∵){A∞ <∞} =
∞⋃
k=1
{A∞ < k} =

∞⋃
k=1

∞⋂
n=1
{An < k}︸ ︷︷ ︸

={Tk=∞}

=
∞⋃
k=1
{Tk =∞}, as A∞ < k =⇒ An < k, ∀n.

Claim: Tk is a stopping time.

(∵){Tk = n} =

 n⋂
i=1
{Ai ≤ k}︸ ︷︷ ︸

Fi−1

 ∩ {An+1 > k}︸ ︷︷ ︸
∈Fn

=⇒ {Tk = n} ∈ Fn.

Claim: ATk∧n is previsible.

(∵)Fix B ∈ B:
{
ω ∈ Ω : ATk∧n ∈ B

}
=
{
ω : Tk ≤ n− 1, ATk∧n ∈ B

}
∩
{
ω : Tk ≥ n,ATk∧n ∈ B

}
So:

{
ω ∈ Ω : ATk∧n ∈ B

}
=

n−1⋃
i=1

∈Fi︷ ︸︸ ︷
{Tk = i}∩

∈Fi−1︷ ︸︸ ︷
{Ai ∈ B}︸ ︷︷ ︸

∈Fn−1

 ∩
{Tk ≤ n− 1}c︸ ︷︷ ︸

∈Fn−1

∩{An ∈ B}︸ ︷︷ ︸
∈Fn−1


Claim: M2

Tk∧n = NTk∧n +ATk∧n
Doob dec.======⇒

of M2
ATk∧n =

〈
MTk∧n

〉
.

(∵)NTk∧n is MG & ATk∧n ∈ Fn−1.

Claim: MTk∧n(ω) bdd in L2 =⇒ lim
n→∞

MTk(ω)∧n exists and is finite.

(∵)E
[
M2
Tk∧n

]
= E

[
NTk∧n

]︸ ︷︷ ︸
=0

+E
[
ATk∧n

]︸ ︷︷ ︸
≤k

≤ k.

Claim: A∞ <∞ =⇒ lim
n→∞

MTk∧n exists and is finite.

(∵)On
{
ω : Tk(ω) =∞

}
, lim
n→∞

MTk(ω)∧n(ω) = lim
n→∞

Mn(ω) exists, except a set Nk of meas. 0.

(ii)

TBD

Easy SLLN for MG M ∈ L2 MG , M0 = 0 & A = 〈M〉.

(i) 1
1 +A

bdd + previs.

(ii) Wn =
(

1
1 +A

•M
)
n

=
n∑
k=1

Mk −Mk−1

1 +Ak
MG with 〈W 〉∞ ≤ 1 & lim

n
Wn∃ a.s.

(iii) Mn

An

a.s.−→ 0 on the set
{
ω ∈ Ω : A∞(ω) =∞

}
.

3More precisely, B =
{
ω ∈ Ω : A∞(ω) <∞

}
. Then, ∃N S.T. P (N) = 0 & lim

n
Mn(ω) exists, ∀ω ∈ B \N .

4i.e., M has uniformly bounded increments.
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Proof: (click)

(i)

(ii)

(iii)

TBD

Levy’s Extension of BC Lemma Suppose En ∈ Fn∀n. Let



Zn(ω) :=
n∑
k=1

1Ek(ω)

ξk := P
(
Ek|Fk−1

)
Yn :=

n∑
k=1

ξk

. Then,

(i) Y∞ <∞ =⇒ Z∞ <∞.

(ii) Y∞ =∞ =⇒ Zn
Yn

a.s.−→ 1.

Note Zn is number of occurrences of Ek (k ≤ n).

Note E [ξk] = P (Ek) =⇒ E [Yn] =
n∑
k=1

P (ξk) ↗︸︷︷︸
MCT

E [Y∞].

∞∑
k=1

P (Ek) <∞ =⇒ E [Y∞] <∞ =⇒ Y∞ <∞ (i)=⇒ Z∞ <∞ =⇒ BC1.

Note En ⊥⊥, Fn = σ(1E1 , . . . ,1En): ξk = P
(
Ek|Fk−1

) ⊥⊥== P (Ek) =⇒ Y∞ =
∞∑
k=1

P (Ek).

(ii)=⇒ Zn
Yn

a.s.−→ 1 =⇒ Z∞ =∞ =⇒ BC2

Proof: (click)

(i)

(ii)

TBD
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7.3 Day 3: Uniform Integrability

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Keyword 1

.

MAIN THEOREMS:

Theorem 1
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Chapter 8

Week 8:
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8.1 Day 1:

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Keyword 1

.

MAIN THEOREMS:

Theorem 1
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8.2 Day 2:

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Keyword 1

.

MAIN THEOREMS:

Theorem 1
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8.3 Day 3:

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

.

KEYWORDS:

Keyword 1

.

MAIN THEOREMS:

Theorem 1
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Index

Lp Space

Completeness, 39

Inequalities

Cauchy-Schwarz Ineq., 38

Holder’s Ineq., 38

Minkovski’s Ineq., 38

Inner Product, 39

Monotonicity of Norms, 38

Norm, 37

Orthogonality, 39

Orthogonal Projection, 40

Parallelogram Law, 39

Pythagora’s Thm, 39

a.s., a.e, a.a.

Almost Sure, 11

Algebra, 9

σ-Algebra, 9

Filtration, 73

σ-Algebra Generated by Coll. of Sets, 9

Borel σ-Algebra, 9

Lebesgue σ-Algebra, 9

Product σ-Algebra, 59

Product σ-Algebra Characterization, 59

Stopped σ-Algebra, 77

Tail σ-Algebra, 28

Angle-Bracket Process, 91, 92

Convergence of M , 93

Levy Extension of BC, 93

Quadratic Variation, 92

Baire Category Theorem, 10

Banach-Tarski Paradox, 10

Borel-Cantelli Lemmas

BC 1, 12, 19

BC 2, 19

Exercises, 21–27

Levy Extension, 93

Cesaro Mean, 90

Lemma, 90

Random, 20

Chebyshev’s Inequality, 38

Chernoff Bound, 52

Rate Function, 52

Convexity of Rate Function, 54

Tight Lower Bound, 55

Tighter Upper Bound, 53

Chernoff’s Inequality, 37

Conditional Expectation

Definition, 64

Existence & Uniqueness, 65

Existence of Conditional Probability, 71

Independence, 70

Intuition, 70

Positivity, 65

Practical π-system Check, 64
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Properties, 66

Symmetry, 71

Correlation, 39

Countable Additivity, 9

Covariance, 39

Variance of a Sum, 39

Cumulative Distribution Function (CDF), 13, 14

Empirical CDF, 45

Glivenko-Cantelli Theorem, 45

Joint CDF, 59

Skorokhod Representation, 17

Dominated Convergence Thm (DCT), 32

Bounded (BCT), 32

Fail, 33

Estimate for Max. of Avg, 42

Event

Tail Event, 28, 29

Expected Value, see Conditional Expectation

Lp Norm, 37

Area under Graph, 63

CDF Integral, 37

Continuous r.v., 40

Definition, 37

Function of a r.v., 40

Independence, 41

Inequalities

Cauchy-Schwarz Ineq., 38

Chebyshev’s Ineq, 38

Chernoff’s Ineq., 37

Holder’s Ineq., 38

Jensen’s Ineq., 38

Markov’s Ineq., 37

Minkovski’s Ineq., 38

Inner Product, 39

Moments, 37

Monotonicity of Norms, 38

Notation, 37

Orthogonality, 39

Orthogonal Projection, 40

Parallelogram Law, 39

Pythagora’s Thm, 39

Sum of r.v.s, 38

Extended Real Line, 13

Extension Theorem

Caratheodory, 10

Uniqueness, 10

Fatou’s Lemma, 32

Fail, 32

Fubini’s Theorem

bΣ Switch, 61

Breaking

σ-Finiteness, 62

Continuous Non-neg. & Integr., 62

Discrete Non-neg. & Integr., 62

Measurability Checks, 60

Theorem, 61

Function

Convex Function, 37

Coordinate Maps, 59

Positive & Negative Part, 30

Simple Function, 30

Approximation, 31

Integral, 30

Max & Min, 30
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Properties, 30

Holder’s Inequality, 38

Independence

π-System, 19

σ-Algebra, 19

Events, 19

Expected Value, 41

Random Variables, 19

Jensen’s Inequality, 38

Kolmogorov

0-1 Law, 19, 28, 83, 87

Maximal Ineq., 42, 44

SLLN, 42

Three Series, 49, 90

Truncation Lemma, 50

Two Series, 49, 89

Kronecker’s Lemma, 44, 49, 90

Large Deviation, see Chernoff Bound

Law of Iterated Logarithm

Kolmogorov, 19

Strassen, 20

Lebesgue Integral

µ-a.e. Equality, 30, 31

Area under Graph, 63

Integrable Function, 30

Linearity, 30, 32

Monotonicity, 30

Notation, 30

Positive Function, 30

Riemann Integrability, 31, 34

Simple Function, 30

Simple Function Approx., 31

Summary Table, 35

Zero Measure, 31

Markov’s Inequality, 37

Martingales

L2

Boundedness in L2, 85, 86

Convergence in L2, 86

Orthogonality of Increments, 86

Sum of 0 Mean Indep rvs in L2, 87

Adapted Process, 73

Angle-Bracket Process, see also Angle-Bracket

Process

Doob

MG Forward Convergence Theorem, 82

Doob Decomposition, 91

Doob-Meyer Decomposition, 91

Optional Stopping Thm, 77, 78

Upcrossing Lemma, 81, 82

Filtration, 73

Natural Filtration, 73

Function of a Martingale, 92

Gambling Strategy, 74

Levy

Extension of BC, 93

Martingale Property, 74

Martingale Transform, 74

Previsible Process, 73

Random Signs, 88

Stopped Process, 76

Stopped Martingales, 76

Stopping Time, see also Stopping Time
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Strong Law, 93

Truncated Martingales, 78

Uniformly Bounded Increments, 93

Measurability

Lebesgue Measure, 9

Measurable Function, 13

Borel Function, 13

Doob-Dynkin, 17

Measurability Properties, 14

Measurable Space, 9

Measure, 9

Absolute Continuity, 34

Bounded Convergence Thm, 32

Change of Measure, 55, 65

Continuity, 12

Dominated Convergence Thm, 32

Fatou’s Lemma, 32

Inclusion/Exclusion Formula, 10

Monotone Convergence of Measures, 10

Product Measure, 59

Scheffe’s Lemma, 33

Union Bound, 10

Uniqueness Lemma, 18

Measure Space, 9

Minkovski’s Inequality, 38

Moment Generating Function, 52

Convexity of Log MGF, 53

Differentiability, 52

Existence, 52

Log MGF Asymptotics, 54

Monotone Class Theorem, 18, 34, 60

Monotone Convergence Thm (MCT), 31

Fail, 31

Oscillation, 85

Finite, 85

Infinite, 85

Probability Density Function (PDF), 40

Radon Nikodym

Chain Rule, 34

Conditional Expectation, 65

Derivative, 34, 40

Measure, 34

Probability Density Function, 40

Random Process

Bounded in L1, 81

Random Variable, 13

σ-Algebra generated by r.v., 13, 16

Xn
a.s.−→ 0 iff, 41

Continuous, 40

Extended r.v.s, 23

Probability Law, 13

Joint CDF Uniqueness, 63

Joint Continuity, 63

Joint Law, 59

Marginal PDF, 63

Skorokhod Representation, 17

Truncation, 37

Renewal Process, 46

Scheffe’s Lemma, 33

Sequence

Cauchy Sequence, 39

Liminf, 11

Limsup, 11

Sandwich Limit, 11
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Series

Convergence, 48

Random Series

Estimate for Max. of Avg, 42

Expectation, 33

Infinite Mean, 51

Kolmogorov’s Max. Ineq., 42, 44

Kolmogorov’s Three Series, 49, 90

Kolmogorov’s Two Series, 49, 89

Kronecker’s Lemma, 44, 49, 90

Properties, 38

Rate of Convergence (L2), 51

Rate of Convergence (Lp), 51

Set

Open Set, 10

Fatou Lemmas, 11

Liminf, 11

Limit of Indicators, 12

Limsup, 11

Nullset, 10

Sandwich Limit, 11

Set Operations, 9

SLLN, 42

Etemadi Ideas, 48

Fail, 25

Khinchine, 42

Kolmogorov, 42

Martingales, 93

Need E | X |<∞, 20

Proof, 42, 43, 50

Rate of Convergence (L2), 51

Rate of Convergence (Lp), 51

Truncation Lemma, 50

Standard Machine, 34

Stopping Time, 76

Calculus, 77

Stopped σ-Algebra, 77

Stopped Martingale, 76

Two Stop. Times, 78

System

π-System, 9, 10, 17, 18

d-System, 16, 18

Dynkinization of a Collection of Sets, 16

Dynkin’s Lemma, 18

Uniqueness Lemma, 18

Tricks

Break Prob. Inequality, 49

Expected Value, 37

Symmetrization/Expanding Ω, 89

Union via Q, 14, 17, 62, 82

Variance, 39

of a Sum, 39

Vitali Set, 10

Wald’s Identity, 80
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