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0.1 Abstract

We are doing a Probability and Stochastic Processes review. This will take all Summer 2017 and
continue during the Fall 2017 semester. We will be covering the following textbooks (in depth

reading is in bold):
— David Williams, Probability With Martingales, 1991 [13]
— Rick Durrett, Probability: Theory and Example, 2010 [5]
— Robert Ash & Catherine Doleans-Dade, Probability With Measure Theory, 2008 [1]
— Patrick Billingsley, Probability And Measure, 1995 [3]
— Geoffrey Grimmett & David Stirzaker, Probability and Random Processes, 2001 [8]
— Geoffrey Grimmett & David Stirzaker, One Thousand Ezercises in Probability, 2001 [7]
— Gerald Folland, Real analysis: modern techniques and their applications, 1999 [6]
— Pierre Bremaud, Point Processes and Queues, 1981 [4]

— David Levin, Yuval Peres, Elizabeth Wilmer, Markov Chains and Mixing Times,

2008 [10]
— Peter Morters & Yuval Peres, Brownian Motion, 2010 [11]
— Bernt oksendal, Stochastic Differential Equations, 2013 [12]
— Alice Guionnet, MIT 18.176 Introduction to Stochastic Analysis, 2013 |9]

— Martin Bazant, MIT 18.366 Random Walks and Diffusion, 2006 [2]



0.2 Syllabus

’0.2.1 Probability Review:

Books Considered:

—[W] David Williams, Probability With Martingales, 1991

—[D] Rick Durrett, Probability: Theory and FExample, 2010

—[A] Robert Ash & Catherine Doleans-Dade, Probability With Measure Theory, 2008
—[B] Patrick Billingsley, Probability And Measure, 1995

—[B] Pierre Bremaud, Point Processes and Queues, 1981

Calendar:
— Week 1 (May 29):

— [W] Chapters 1-5: Measure Spaces, Events, Random Variables, Independence and In-
tegration.

— [D] 2.3 Borel-Cantelli
— Week 2 (June 5):

— [W] Chapters 6-8: Expectation, Strong Law and Product Measure.
— [D] 2.4.7 Glivenko-Cantelli (SLLN) Theorem

— [D] 2.5 Convergence of Random Series

— [D] 2.2.3 Truncation

— Week 3 (June 12):
— [W] Chapters 9-11: Conditional Expectation, Martingales and Convergence Theorem.
— Week 4 (June 19):

— [W] Chapters 12-13: Martingales Bounded in L? and Uniform Integrability.
— [D] Chapter 5: Martingales
— [Br] Chapter 1: Martingales

— Week 5 (June 26):

— [W] Chapter 14: Uniformly Integrable Martingales.
— [D] Chapter 5: Martingales
— [Br] Chapter 1: Martingales

— Week 6 (July 3):

— [W] Chapters 16-18: Characteristic Functions, Weak Convergence and Central Limit
Theorem.

— [D] 3.4.4 Berry-Esseen Inequality
— [D] 3.3.4 Polya’s Criterion (characteristic functions)
— [D] 3.9 Limit theorems in R¢

— Week 7 (July 10):
— [W] Chapters 0 & 15: Branching Processes and Applications.

Additional Notes

Whenever deemed necessary, we will look at Ash and Billingsley. Priority will be on Ash.



’0.2.2 Markov Chains
Books Considered:
—[P] David Levin, Yuval Peres, Elizabeth Wilmer, Markov Chains and Mizing Times, 2008

—[D] Rick Durrett, Probability: Theory and Example, 2010

Calendar:
— Week 8 (July 17):

— [P] Chapters 1 & 2: Markov Chains, Classical Examples.
— [D] Chapter 4: Random Walks

—~ Week 9 (July 24):

— [P] Chapters 4 & 5: Mixing and Coupling.
— Week 10 (July 31):

— [P] Chapters 6 & 7: Strong Stationary Times and Lower Bounds.
— Week 11 (August 7):

— [P] Chapters 9-11: Networks, Hitting Times and Cover Times.

Week 12 (August 14):
— [P] Chapters 12 & 3: Eigenvalues and Metropolis/Glauber Dynamics.
— Week 13 (August 21):

— [P] Chapters 13 & 17: Eigenfunctions/Comparison of chains and Martingales on Evolv-
ing Sets.

—~ Week 14 (August 28):
— [P] Chapters 18 & 20: Cutoff and Continuous Time Chains.
— Week 15 (September 4):

— [P] Chapter 21: Countable States.

Additional Notes

In Peres, we will skip Chapters:

- ‘8: Shuffling ‘%‘ 16: Shuffling Genes

- ‘ 14: Path Coupling ‘—>‘ 22: Coupling from the Past ‘ & ‘ 15: Ising Model

- ‘19: Lamplighter‘




’0.2.3 Brownian Motion & Stochastic Calculus
Books Considered:
—[P] Peter Morters & Yuval Peres, Brownian Motion, 2010

—[O] Bernt @ksendal, Stochastic Differential Equations, 2013

—[B] Pierre Bremaud, Point Processes and Queues, 1981

—[G] Alice Guionnet, MIT 18.176 Introduction to Stochastic Analysis, 2013
—[Ba] Martin Bazant, MIT 18.366 Random Walks and Diffusion, 2006

Calendar:
— Unit 1:
— [P] Chapter 1: Brownian Motion as a Random Function.
— Unit 2:
— [P] Chapter 2: Brownian Motion as a Strong Markov Process.
— Unit 3:
— [P] Chapter 3: Harmonic Functions, Transience and Recurrence.
— Unit 4:
— [P] Chapter 4: Haussdorff Dimension.
— Unit 5:
— [P] Chapter 5: Brownian Motion and Random Walk.
— Unit 6:
— [P] Chapter 6: Brownian Local Time.
— Unit 7:
— [O] Chapters 1-4: Introduction, Preliminaries and Ito Integrals.
— Unit &:

— [O] Chapters 4 & 5: Tto Formula, Martingale Representation Theorem and Stochastic
Differential Equations.

— Unit 9:
— [O] Chapter 6: Filtering.
— Unit 10:
— [O] Chapter 7: Diffusions.
— Unit 11:
— [O] Chapter 8: Topics in Diffusion Theory.
— Unit 12:
— [O] Chapter 9: Boundary Value Problems.



— Unit 13:

— [O] Chapter 10: Optimal Stopping,.

Unit 14:
— [O] Chapter 11: Stochastic Control.
— Unit 15:
— [O] Chapter 12: Mathematical Finance.
— Unit 16:
— [P] Chapter 7: Stochastic Integrals.

Unit 17:
— [P] Chapter 8: Potential Theory of Brownian Motion.
— Unit 18:

— [P] Chapter 9: (Self) Intersections of Brownian Paths.

Unit 19:

— [P] Chapter 10: Exceptional Sets For Brownian Motion.

Additional Notes

Try to get to Bremaud book and Guionnet’s notes as well. In Peres, we will skip Chapter 11:
Stochastic Loewner Evolution and Planar Brownian Motion.



Chapter 1

Week 1: Measure Spaces, Events

and Random Variables



1.1 Day 1: Measure Spaces

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

KEYWORDS:

Set Operations N,U, (.)% \ and AAB = (AU B) \ (AN B) (symmetric difference)

Algebra Collection ¥ of subsets of set S, S.T. stable under finitely many sets operations:
(1) S € %o
(i) F € ¥y = F°e€X
(#it) FFGeXy = FUG € X

o-algebra Collection X of subsets of set S, S.T. stable under finitely many sets operations:
(i) Sex
() FEY = F°eX
(iii) F, €Y = U, Fr, €X

m-system Family of subsets of set S that is stable under finite ()

Measurable Space (5,X) and Measure Space (S, %, P)

o-Algebra Generated by C: C=class of subsets of S = o(C) = m >

3, DC is a
o-algebra on S

= 0(C) = smallest o-algebra on S containing C.
Borel o-algebra #(S) = o(open) (S =topological space)

Countable Additivity Just right: more powerful than finite additivity but does not lead to

contradictions (uncountable additivity: P(U;y ;{z}) =0 or 17)

disjoint

PN
Measure p: X — [0,00] with Countable additivity: P | >~, A, |=>._,P(4,)

Finite Meas pu(S)<oo; Prob Meas ;1(S)=1; o-Finite Meas 3 partition (S,,) with x(S,)<oo

Construction of Lebesgue Meas. Define it on simple sets (a,b] (guarantees no overlap): get

an algebra, extend via Caratheodory, argue the uniqueness.

Lebesgue o-algebra Completion of #(R) with nullset.



MAIN THEOREMS:

Vitali Sets On [ =[0,1]: x ~y < (z —y) € Q. Let S/ ~=set of equivalence classes determined
by ~: these classes are nonempty (axiom of choice) and we can choose one element of each
equivalence class.

Axiom of Choice = 3f : (S/ ~) = S = Usg(s/~)A (choose 1 element of each equiv. class).

V(S) :={f(A): A e (S/ ~)}= set formed by picking exactly 1 element of each equiv class.
V(S) is not meas. (.)A; ={a+¢ (mod 1) |a € A} (¢ € Q) we have a countably family of
pairwise disjoint sets whose union is [0,1]. x([0,1]) = > pu(Aq) = Yoy p(A) = 0o x pu(A).

Banach-Tarski Paradox 3F C S? (Sphere in R?) S.T. 52 = UleTi(k)F V3<k<oo(r—ik=

rotation). F' must be non-meas., otherwise length(F")=0.

Characterization of open subsets of R G C Ropen & G = J; O;, i € I countable, O; disjoint

open interval.
Generators of B(R), n-systems Z(S) = o(open) = o(n(R)), with 7(R) = {(—o0, z]: x € R}

Uniqueness of Extension P; = Py (general: p(2) < oo) on a m-system = agree on o(m).

Application, from CDF’s to probability laws with (—oc, z].

Caratheodory’s Extension Theorem Extend a pre-measure on an algebra, to a measure p(-)

on o(algebra). Used together with previous theorem.
Union Bound p (Ul 4;) <300 pu(4)

Inclusion/Exclusion Formula A;,..., A, € ¥: u(A; UAs) = pu(A1) + p(Az) — p(A1 N Ag) and

1 UAi :Zu(Ai)—Zu(AiﬂAj)—i— > w(ANA;NA) — L+ (1) (AN N Ay)

1<j i<j<k

Nullsets | Jy(nullsets) = nullset
Baire Category Theorem X = J F), complete metric space (F), closed) = 3F,, S.T. F; # &

Monotone Convergence of Measures A, € X:
*An S A = p(An) S (A)
*An A & Tk ST p(Ar) < oo = p(A4n) \y u(A)
Careful! (x2) Fails if u(A,) = oo Vn
A, =[n,0) & = li7rln,u(An) =00 #0=pu(@)=p <1iTanA”>

10



1.2 Day 2: Events

Main Reference(s): David Williams, Probability With Martingales, 1991

KEYWORDS:

Almost sure A statement S holds almost surely (a.s.) if P(S) = 1.

Liminf of Sequences lim inf z,, = lim inf z; = sup inf zj exist (") inf xp=monotonic
n k>n n>1k>n k>n

Limsup of Sequences limsup z,, = lim sup z; = inf sup xy exist (*.")sup xxy=monotonic
N g>n n>1g>np k>n

Liminf of Sets liminf A, = U m A, w € all A,,’s except possibly a finitely many of A,,’s
n>1k>n

Limsup of Sets limsup 4,, = n U Aj, w € infinitely many A,,’s.
n>1k>n

MAIN THEOREMS:

a.s. Intersection F,, € # and P(F,,) =1 = P(,F.) =1

Sandwich Limits inf z,, < inf z,, <liminfz, <limsupz, < sup z, < supx,.
n>1 n>k n n n>k n>1

z > limsupz, = =z, < z eventually (n big enough)

n

z < limsup z,, = x,, > z i.0.(infinitely often/infinitely many n).
n

Sandwich Limits of sets (] A, C | J (1) 4x C lim inf A, C limnsup Anc (VU 4 c | A

k>1 n>ik>n n>ik>n k>1

Fatou Lemmas Limsup/liminf on LHS for sets, on RHS for sequences.

1. P(limsup E,) > limsupP(F,). Need P(-) finite (prob. measures OK).

2. P(liminf E,,) < liminf P(E,,). All measures.

Sketch: cf. Williams + By Exercise 2.9 Ly sup, 5, = limsup1g,
n

= P(limsup E,,) = /lim sup 1 dP > lim sup/lEndIP’ = limsup P(E,,). O

11



Borel-Cantelli 1 ) P(4,) < oo = P(4, i.0) :=P(limsup, A,) =0

P (limsup,, A,) <P (UnZk An) <> P(Ag) -0, a8 n — o0 O

Convergence of Events {4,} be a seq of sets: lim A4, = A < lim I4 (w)=I4(w) Yw.
n—oo

n—o0
(=) Assume that nli_)n;o A, = A. Consider the two following cases:
(i) we A: linn_1> i£f A, = A — w belongs to all but finitely many of the sets A,
= 14, (w) =1 for all but finitely many n — nlgl;o Iy, (w)=1=I4(w).
(ii) w ¢ A: limsup A,, = A = w belongs to at most finitely many of the sets 4,
= I4,(w) i—())o?or all but finitely many n = nlg]go Iy, (w)=0=1I4(w)
(<) Assume that nli_)nolo Ia, (w) =1a(w) Yw. Consider two cases:

(1) lim,—, o A, = B exists for some set B # A:

— either B\A#Jor A\B# 9@ = lim 4, =B & lim I (w)=14(w).
n—oo

n—oo

~IB\A#2: we B\ AL lim I (w) =Ipw) =1

above n—oo
But,w¢ A= I4(w) =0= nli)noloIAn(w) =Ia(w) =0[=%F]
Result

~HA\B#2: we A\ B 2 lim, o0 L4, (w) = Ip(w) = 0
Butw € A= I4(w) =1 = limy, ;00 {4, (w) = [4(w) = 1[==]

(ii) The limit lim,,_, o, A, does not exist:

= liminf 4,, ¢ limsup 4,, = Jw € co many A,’s, but also w & to co many A,’s.

=>E2 n—00

0, for co many choices of n,
== I A, (w) =
1, for oo many choices of n.

— 14, (w) does not converge —> the condition lim I (w)= I4(w) Yw, cannot hold. O
n—oo

Continuity of Prob. Measures {4,,} a sequence of events: A, - A= lim P(4,) =P(4)

n—oo

Dr Can: As“A, > Ao 1, —147and 14, <1€ LYQ,.F,P) 25 P(4,) =E[14,] > E[14] = P (A).

ZBC: B, = m Ay N Aand C, = U A, N\ A. By Monotone Convergence of Measures:

k=n k=n

limsupP (4,,) < li_)m P(C,) =P(A) = lim P(B,) <liminfP(A,) so all are equal. O
n—oo

T—300 n—00 n—00

12



1.3 Day 3: Random Variables

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

KEYWORDS:

Measurable Function h : (X, X)—(R, #) measurable if
JUB) = {weQ: f(w) e BYe, VB e #

Compactification Use R = R U {£o0}
Borel function | ¥ = o(S) = #(S), S topological
Random Variable X : (Q,.7) — (R, #) is (#, #)measurable

c-algebra generated by rv’s o(X; : i € I) = 0 {weQ: X;(w)eB}:icl,BeB) C F.

Smallest o —algebra preserving measurability of X;’s. o(X,, :n e N) =0¢ (U o(Xp: k< n))

n

7 system
Law ofa R.V. X : (,.%) —» (R, %), P : % — [0,1], define Px : B — [0,1] as Px(B) =

P(X~1(B)). CDF uniquely defines Px (argue by uniqueness in m—systems)

13




MAIN THEOREMS:

Properties of Inverse Map and Measurability

= b Uy 4a) = U, h 1 (Aa) and h71(A°) = (h71(4))°

— If Z = 0(C), then suffice to check measurability of h=!(G), VG € C

A={GeZB:fG)eX}. CCAC B = B=0(C)Co(A)Co(RB) = 5.

Conclude by showing A is a o—algebra. O

— h: S — R continuous = h Borel (S topological). Application: take C' = w(R).

- h:(R,#) — (R, %) monotonic = h measurable.

— h1,he : (S, %) = (R, %) measurable = hy + ha, hy - ha, and Ah; (A € R) measurable.

— hy : (51,81) = (S2,%2) & ha i (S2,22) — (S3,%83) = haohy : (51,%51) — (S5,%3)
measurable.

~ hp : (S, %) — (R, B) measurable = inf h,,, liminf,, h,,, limsup,, h,, (X, %) measurable.

— hpi(S,2)—= (R, B) measurable = A := {w € Q : lim,, h, (w) exists in R} measurable(€X)

h* = limsup,, hy, and h_ = liminf,, h,,, so:
A= {h*(z) < 0o} N{h-(2) > 00} N{h*(2) = h_(2)}
= (Un{r"(2) < n}) N (Up{h-(2) > —n}) N ((hT = h-)7 ({0})

Can also use a trick: take the union via Q O

CDF F:R —[0,1] is a CDF <

* F(=00) =0, F(+00) =1
* F monotonically increasing (note: so # of discontinuities of f < Xy = |N|)

* F right continuous: th\ntl F(t) = F(to) (filled dot e always on right, empty dot o on left)
0

14



Chapter 2

Week 2: Random Variables,

Independence and Integration
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2.1 Day 1: Skorokhod representation. Doob-Dynkin Lemma.

Monotone Class Theorem.

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

KEYWORDS:

o-algebra Generated by a r.v. Intuition: if event A € o(X) < I can decide if A happened or
not based on the result of the experiment I am doing on X.
Observing the value of X (w) <= observing the value of 1 4(w) VA € o(X)
Observing the values of X;(w), i € I <= observing the value of 14(w) VA € o(X;, i € I)

Ex: flip coin, X; = outcome of i'" toss. X; € o(X3) but X, ¢ (X))
d-system S a set, D = collection of subsets of S. D = d-system on S <=

(a) SeD
(b) ABeD: ACB = B\AeD

(¢c) A, eD: A, /A = Ae€D

Dynkinization C = class of subsets of S: d(C) = N{all d-systems containing C}.

d(C) = smallest d-system containing C & d(C) C o(C)

16



MAIN THEOREMS:

Skorokhod Representation Construct r.v. with given CDF F(-).
Note you/computer can generate any r.v. Y by applying Fy' to a random U0, 1] r.v.
F:R —[0,1] a CDF, (2, #,P) = ([0,1], #([0,1]),Leb) (= P(w < t) =t for ¢ € [0,1])
X~ :=inf{z: F(z) > w} and Xt :=inf{z: F(z) > w}.
Goal: w< F(c) & X (w) <¢, F(c) =P(w < F(c)) =P(X~ (w) < ¢) = Fx-(c).
()2 > X (w) = F(z) > w (z > inf, hence can’t be a lower bd on set).
So F(X™(w)) = lim\ x-(w) F(2) > w (right-continuity).
Note P(X* =X")=1 (use: {X~ # Xt} = ol X <g< X'} O

Handy: 0(Y) =Y %) = ({w:Y(w) € B} VB € %)
&m(Y)=Y 1 n(R)) = ({w:Y(w) <2} Vr € R)

Doob-Dynkin X, Y : (,.%) —» (R,%#): X is o(Y)-measurable & X = f(Y), f (£, %#)-meas.
Note X, {Y;:ie€I}:(Q,F) — (R,A): X is o(Y; : i € I)-measurable

aree s Yo o), f(BRY), B)-meas.

Careful! | I finite: stop at n & use f € #". I uncountable: Z(R') > [[,.; Z(R) so need

[ €llie; ZR).

H:={X:3f:(R,B) - (R,Z) bounded, S.T. X = f(Y)}. Goal: H is a Monotone Class.

< 3 countable seq (i1,42,...,0n,...) S.T. X = f(V3,,Y;

Step 1: H = V-Space
Step 2: X(w)=1€H

Step 3: X, e H,0<X,, /X & X bdd = X € H. 1,2,3 = apply Monotone Class Thm
()X, = fu(Y), take f =limsup,, fr, show X = f(Y) (need: argue f measurable, bdd, etc.).
f(Y (w) = limsup,, /(Y (w)) = lim, f,(Y(w)) = X(w), 1st eq from def, 2nd lim 3, 3rd by assertion.

Step 4: VF € o(Y), 1p € H.
(o)=Y Y B)=Feo(Y)=F=Y"!B,3B € . Show 1lp(w) = 15(Y (w)).

17



m & d-systems S = set, 3 = collection of subsets S: ¥ = g-algebra < ¥ = m-syst AND d-syst.

Dynkin’s Lemma 7 = n-system = d(Z) = o(Z)
If a d-system D contains a 7-system Z: D contains the o-algebra o(Z) generated by Z.
Goal: d(Z) = m-system (use above prop to conclude).
Let D1 :={A€d(Z): BNA€cd(Z),VBeI} & Dy:={Aecd(Z):BnAcdZ),VBedI)}
Show: Dy D Z, Dy = d-system = D1 = d(D1) = d(Z) (as D1 C T by def)
Show: Dy D T (use Dy = T result), Dy = d-system = Dy = d(D3) = d(Z) (as D2 C I by def)

= d(Z) = 7m-system. O

Monotone-Class P a property, H = {f : S — R : f bdd and satisfying P}, Z a m-system.
(i) fLgeEH,aeR = f+g&afeH

(15)  1lg € H (cst function 1)

(tit)) 0< fo N f,fn€H, fbounded = feH

(v) A€ = 1aeH

THEN: “H satisfies (x) = g € H, Vg € 0 (Z) bounded (¢: S — R)”, i.e., | bo(I) C H|

Idea: approx any bdd funct S—R by an * seq of simple functs (lin. combo of 1 functs)

() =

Note : The natural setup is as follows. Given a property P, we want to verify this is fulfilled
by any bo(I)-function. We define H as the set of all bo(I)-functions obeying P, then try to

show (%) is also satisfied to reach to the conclusion.

D:={A€c(Z):14 € H}. Show D D T (by def) & D=d-system (use all )

= D =d(D)Dd(Z) = o(Z). Take g, simple, 0 < g, /g and use *(i, i), so g € H. O

Uniqueness Lemma S a set, Z = m-system on S, ¥ = o(Z), u1, p2 measures on (S, X).

w1 = p2 on Z(with pg(S) = p2(S) < 00) = p1 = pg on X.

D={F e€X: u(F)=u(F)}: Show D = d-system on S, D D Z (by def)

= D=d(D) > d(I)=0(I) =3 (by Dynkin) = D = 3. 0

18



2.2 Day 2: Independence & Borel-Cantelli Lemma

Main Reference(s): — David Williams, Probability With Martingales, 1991 Chap.4

— Rick Durrett, Probability: Theory and Ezample, 2010 |5| Sec. 2.3

KEYWORDS: Given (Q,.%,P) triplet

Indep. o-alg. ﬁ1,9\2,‘ - C 49?, ifv Ai1 S gg‘\il, R ,Ain € cgzin, ]P(A“ n-- -ﬂAin) = HZ:I P(Azk)

Careful! here done for finite collection; infinite needs continuity argument
Indep. of rov. X1, Xo,... L. & o(X1),0(X2),... are L.

Indep. of events Ei, Es,... indep. if 0(1g,),0(1g,),... are L.
Careful! o(1g,) ={9,Q, E;, Ef}, so complements also L.

MAIN THEOREMS:

Indep. 7-sys. = Indep. o-alg. Z 1L J (7-sys.) = o(Z) L o(J).

Borel-Cantelli 1 } P(4,) < oo = P(4, i.0) := P(limsup, A,) =0

P (limsup,, 4,) <P (UnZk An) <> P(Ay) -0, asn — o0 O

Borel-Cantelli 2 } P(A4,) =00 & A, L = P(A, i.0) :=P(limsup, A,) =1

o] A,l oco oo o]
P ((limsup,, A,)¢) =P (liminf, A%) =P (Uns1 Nizn A7) < > P (Mizndf) =D [[ P4 =D 0
n=1 n=1k=n n=1
H P(A%) H —P(4g)) <e EanP(Ak) =0sincel —xz > e * Vx> 0. O
| S
k>n k>n —e—

Kolmogorov’s Law of Iterated Logarithm Xi, Xs,...iid. r.v.s with E[X] =0, E[X?] = 1.
limsup,, . ——22— = +1, as.,
Let S, = X1 + Xz + ...+ X,. Then: T Vanlogloan

liminf, o ——S2— = —1,  as.
1/2nloglogn

Note See Section 4.7 for proof when X,, ~ .47(0,1).
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Strassen’s Law of Iterated Logarithm X;, X5,...ii.d. r.v.s with mean 0 and variance 1. Let
Sp = X1+ Xo+. . .+X,, and define the linear interpolation S; = (t—n)Sy+1+(n+1—¢)S,, Vt €
[n,n + 1). Define:
_ Snt (w)
*Zn (t,w) = Janiogloan Yt € [0,1]
*K(w) ={f:t—f(t,w) | T aseq ni(w),na(w)... € NS.T.Z, (¢, w)— f(t,w) unif in ¢ € [0,1]}
t

1
*K = {f it f(t,w) | f e Cl0,1] S.T. f(¢) :/0 h(s) ds where /0 h(s)?ds <1

sup{f(1) | f € K} = +1,
nf{f(1)|fe K} = 1.

= Almost all paths have the same limiting shapes.

THEN: P(K(w)=K)=1, and

But {f € K| f(1) =1} = {f(t) =t} only, big values of S occur when the whole (rescaled to
Z) path looks like the line f(t) =t¢.

— Almost all (rescaled) paths Z look i.o. to f(t) =t and i.o. to f(t) = —t.

Durrett 2.3.7/Williams E4.6 {X,, iid }, S, =X1+...+ X,:
E[|X;]] =00 = P(|X,| >nio. )=1land P (limn ST" exists € (—oo,—|—oo)) =0
So E[|X]] < o is necessary for the SLLN

+oo eo
First: oo = E[|X]] = / P(|X|> ) do < ZIP (1X] > n) & {X;} iid = P(|X,|>nio. )=1.

0 n=0
Second: Let C' = {w : lim,, 5= exists € (—oo,+00)}. GOAL: P(C) = 0.
S’n, Sn-i—l Sn Xn+1 g n Sn Sn+1 2 g
o - _ (X = nio ) —22 a2z - Zio.,
n ntl nmtD) ng1 o R ONwiXalznio } Ty = 0and |28 - 27> 5 o
therefore w ¢ C, hence CN{w : |X,| > nio. } =@. But P(|X,| >nio. )=1 = P(C)=0. O

n a.s.

a.s. S
Random Cesaro Means {X,, L},ceR, S, =X;+...+X,: X, —m ¢ = —
n

For simplicity, assume that X,, > ¢. X,, =5 ¢, so for a.e. w, Ve > 0, IN(w), X,, —c < ¢, Vn > N(w).
S (w) _ Xi(w)+...+ Xn(w) LB N Xy (w) + ...+ Xp(w)

)

Now fix w € Q:

Sulw) _ Xa(w) + - + Xny(w) . n N (Xn1(@) =€)+ ot (Xn(@) =) + (n— N) x ¢
n—N

, SO

n n n

Sp(w) - Xl(w)+...+XN(w)+n—N(n—N)><(c—i—s)
n n n n—N

s ~ _

—0 a;rn—wo —c as n—0o0
Also, X,, > ¢ => S, > c. Hence lim, S,(w) = c for almost all w, i.e., S, = c.

We can generalize the proof by looking at ¢ — & < X,, < ¢+ when n > N(w). O




EXERCISES:

1
Let X,, be nonnegative r.v.s (not necessarily independent) S.T. 0 < P(X,, > B) < B2 VY B >0,V n.

X
(a) Fix some B > 0. Show that IP(lim sup 22 > B) —0.

n—oo N

(b) Show that, with probability 1, lim,, . (X, /n) exists and is equal to zero.

(a) We have
(228 p(nzn) ot v
Therefore, ~ »
z:: (%2§> —7232 2 <

By the BC Lemma, the event {X,,/n > B/2} can only happen a finite number of times (w.p. 1), s

]P’(limsup& > E) = 0.

n—oo N 2

_B_1 _B

The strict inequality is crucial here: e.g., = -~ = lim supn o = o, therefore

2
P(lim sup,,_, - —nﬂ > &) = P(limsup,,_,,, £ > £) = 0 would fail for “<”.

X,
Since 0 < IE"(limsupn_>c><> Ao > B) < ]P’(limsupn_)oo 2o > %) =0, we get ]P’(limsupT” > B) =0.

n—oo

X, 1
(b) We define A, = {w : limsupM < —}:

n—00 n ~k
Since X,, are nonnegative, we observe that

Using the result from part (a), we have

X, 1
P(Af) =P ({w : liﬁsip# > %}> =0, Vk.

Therefore,




Let A,, be a sequence of independent events with P(A,,) < 1 for all n, and P(U,A4,,) = 1.

(a) Show that P(A4, i.o.)=1.

(b) Give an example to show that the conclusion of part (a) does not necessarily hold if we remove the

assumption that P(4,) < 1 for all n.

We are given that

P((Un4,)°) =0,

P(NnAS) = 0.

Using the multiplication theorem (part (e) of Theorem 1 in the notes for Lecture 3), and independence, we

conclude that

[[a-Pr4,)) =o.

n

We will then use the following fact.

Claim: if a sequence {z;}, with 0 < z; < 1, satisfies [[,(1 — 2;) = 0 z; in [0, 1), then ). z; = oo.

Proof of the claim: We can assume that after some integer N, every z; is below 1/2; else, the conclusion
follows trivially. Note that for every x € [0,1/2], we have log(1 — ) > —2z. To see this, observe that both
the left-hand and right-hand side are 0 at y = 0, but the right-hand side has a smaller derivative throughout
[0,1/2].

Since [];= 5 (1 — z;) = 0, we take logarithms to obtain

(o] o0
Z —2x; < Z log(1 — ;) = —o0,
i=N i=N

which establishes the claimed result.

Now we apply the above claim to obtain

Z P(A,) = co.

n
Using the Borel-Cantelli lemma, we conclude that A,, occurs infinitely often, with probability 1.
For part (b), consider the sequence of events where A; = Q, and A, is empty for n > 1. We have

P(U,A,,) =1, and the events are independent. However, P(A4,, i.0.) = 0.




(Durrett 2.3.13) Let {X,,} be a sequence of independent random variables. Show that sup,, X;,, = oo,
a.s., if and only if Y7 | P(X,, > ¢) < oo for some c.

Remark: The problem indicates that X; are random variables (as opposed to extended-valued random
variables), which means that their range is the real numbers. On the other hand, we can’t say the same

about sup; X;, since it can take the value of +oo0.

(click)

Suppose Y>> P(X,, > ¢) = oo for all c. For any ¢, the probability of sup; X; < ¢ must be 0 since the event

X, > c occurs infinitely often with probability 1 by the Borel-Cantelli lemma. It follows that

P (supXi < oo) =P U {squi < n}

n=0 v
< ;]P’ (sz}pXi < n>
<> 0=0
n

so sup; X; must equal +oco with probability 1.
Suppose that for some ¢, > o2 P(X, > ¢) < co. By the Borel-Cantelli lemma, this means that with
probability 1, the number of times X; > c is finite. If X; > ¢ occurs finitely many times, then sup, X; is

finite, and it follows that sup; X; is finite with probability 1.

Let X,, be independent, identically distributed (i.i.d.) random variables, defined on the same probability
space. Each X, is exponentially distributed that are exponentially distributed, with PDF fx(z) = e~ %,
x > 0, so that P(X > x) = e~ 7, for all x > 0. Let ¢ be a positive constant, and consider the event A that

“X,, > clogn for infinitely many values of n.”

Find a necessary and sufficient condition on ¢ for P(A) to be equal to 1.

(click)
First, note that if X,, has PDF fx(z) = e~ %, its CDF is Fx(z) =1 — e * and P(X,, > x) = e~ *. Defining

A, = {X, > clogn}, a necessary and sufficient condition for the statement “A,, occurs infinitely often” is, by

. 1
independence of A4,, and the second Borel-Cantelli lemma, Z P(A,,) = co. However, P(A,) = e ¢lo8" = vl
e (e 1 n=l
Therefore the series Z P(A,) = Z v diverges if and only if ¢ < 1.
n=1 n=1
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Let X be a nonnegative r.v., with E[X] < oo. Let A, Ao, ... be an arbitrary sequence of events such that

P(A,) <277, for every n, and let I, be the indicator r.v. of A,,. Show that lim, ,. E[X1,] = 0.

(click)
We have that > 2 P(A,) < co. By the BC lemma, and w.p. 1, only finitely many of the events A,, will
occur. In particular, the seq. of r.v.s 1,, converges to 0 a.s. It follows that X1,, also converges to 0 a.s. The

r.v.s X1, are bounded above by the integrable r.v. X. Conclude with the dominated convergence thm.

(Durrett 2.3.11) Suppose that the events A, satisfy P(4,) — 0 and > o P(AS N A,4+1) < 0.
Show that P(4, i.0.) = 0.

(click)
Define the set
A =limsup A, = ﬂ U A,

n—o0
n=1m=n

We wish to show P(A) = 0. Now, A C U>®_ A, for all m, and by monotonicity of the measure, P(A) <

P(UX_, Ap), for all n. In addition,

-

P
:
I

Ap U (An+1 \ An) U (An+2 \ An-i-l) U

= ApU(An1NAL)U(ApgaNAT 1)U+,
and these are disjoint sets. Therefore by the union bound, and countable additivity,

P(4) <P ( U Am> P4+ 3 Pl 014,

m=n m=n

This holds for all n, and therefore it holds in the limit as n goes to infinity. But the limit of the final

expression is zero, since P(A,) — 0, and since Y~ | P(AS N A,q1) < o0.

Second solution outline We observe that if A, occurs infinitely often, then either (a) AS N A,41 oc-
curs infinitely often, or (b) there is some k such that A, occurs for every n > k. Alternative (a) has zero
probability (by applying the Borel-Cantelli Lemma to the sequence AS N A,,11. Alternative (b) is the event
Up 1 Bk, where By = Mo Ay,. Note that P(By) < P(A,,) for every m > k. Since P(A,) — 0, it follows

that P(By) = 0 for every k, from which it follows (using the union bound) that P(Ug2,Bx) = 0.
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(Williams p-41) Let {X,,} be a sequence of i.i.d Exp(1) r.v.s: then P(X,, > z)=e" ", z > 0.

0, ifa>1,
Show that: P (X, > alogn for infinitely many n) = and limsup —— =1 a.s.
1, ifa<l. n—oo 10BN
Note Similarly, we can prove that:
0, if > 1,
P (X, > logn + aloglogn, i.0.) = and
1, ifa<l
0, ifa>1,
P (X, > logn + loglogn + alogloglogn, i.o.) = etc.
1, ifa<l.

(click)

P(X,, > z) = e ®, x > 0 implies that P(X,, > alogn) =n~%, for a > 0. Therefore:

i >0 <oo, ifa>1 = apply BC. 1,
Z P(X, > alogn) = Z n=% PPy , as desired Now
=1 n=1 =00, ifa<1(+L)= applyBC. 2.

3

X
P ( lim sup —=

n—o00 IOgTL n—oo lOogmn —

X
> 1> > P(X, >logn,io.) =1 = ]P’(limsup1 L > 1) = 1. We now show that

X, 2 1
it is actually equal to 1: Vk € N, P(limsup—— >1+-] < P|{X,>(1+ = )logn,io. | = 0.
n—oo lOgn k k

. X, e X, 2 =N X, 2
=P |limsup—— >1) =P U limsup —— > 1+ — < g Pllimsup—— >1+—- | =0
n—oo lOgmn w2y U nooo logn k Pt n—oo lOgmn k

" —1as.

X
=P (limsup = — 1) =1 = limsup
n—o00 IOgTL n—00 logn

The higher order approximations are obtained in a similar way.

n?—1, w.p. n—lz,
(Williams [13] E4.7) Let {X, L}, S.T. X, =
-1, w.p. 1 — #
Xl +X2++Xn a.s.

Show that E[X,] =0 & S, = - — -1

Note In the absence of identicality of distribution, SLLN does not hold.

(click)

S P(X, > 1) = 3%, L < oo ByBC. 1, P(X,, > —1i0) = 0 = For ae. w, IN(w), X, <

n=1 n2
a.s. X e X
1, ¥n > N(w) So Xn(w) = —1, ¥n > N(w) and X, 2% —1. Now: Sy(w) = 2@+ + Xn(w)

- NX . X o+ X - N -1 — N
n Ni1(w)+ ...+ (w)7 50 Sy (w) = 1(w)+ ...+ Xy(w) +n x (n )
n n—N n n n—N

+

vV TV
—0 as n—o0 ——1 as n—o0
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Exercise 6. Let {X,,} be a sequence of independent non-negative random vari-
ables. Show that sequence X, is almost surely bounded if and only if } >° , P(X,, >
¢) < oo for some c¢. (Hint: X, a.s. bounded simply means P(sup,, X,, = oc) =

0.)

Solution: Suppose that there exists such a ¢. Then, with probability 1, the set
S ={n| X,, > c} is finite. Then, sup,, X,, < max{c, max,cs X, } < oo, as.
Conversely, if if no such c exists, then X,, > ¢, i.0. By letting k range over
the integers, we see that except for a countable union of zero measure sets, then
for all £, there exists ny, such that X,,, > k, so that sup,, X,, = oo, a.s.
(Alternate Solution). The event {sup,, X, = oo} can be expressed as

oo oo oo

{Sl;pX = o0} = ﬂ ﬂ U{Xk>m}.

m=1n=1k=n

Suppose sup,, X, (w) = oc. Suppose there exists natural numbers mg and ng
so that SUDg>n, < M0, then

sup X, (w) = max{ max X (w), sup Xk(w)}
n j=1,...,ng—1 k>ng

< max{_ max Xj(W),m[]} < 00,
7=1.....,np—1

a contradiction. Conversely suppose for all M € N and for all N € N there
exists ky > N such that X;, (w) > M, then

sup Xp(w) > X, > M.
1

Therefore the sup is larger than any natural number and must be infinite. Hence
the desired relation holds.
Rewriting the above expression

o0
{Suan = oo} = ﬂ {X, >mio.}.
n m=1
Hence, forall m e N

]P’(supX =oo) <P(X,>mio.}. (1)
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Moreover, as the events {X,, > m} are nested, {X,, > m + 1} C {X,, > m},
by continuity of probability
mM—0C

P (suan = oo) = lim P(X, >mio). (2)
L

Suppose X, is almost surely bounded. Suppose forall c € R
o0
Z]P[Xn > ¢) = 00.
n=1

then as the { X, } are independent by the Borel Cantelli Lemma, for all ¢,
P(X, > cio) = 1.

In particular this holds for all m € N. Applying (2)

mM—0C m—0o0o

P(supX =oo)= lim P(X, >mio)= lim 1=1,
T

a contradiction.
Conversely suppose there exists ¢ € R such that

o0
Y P(Xp>c)<oo = P(X,>cio)=0,

n=1

by Borel Cantelli. Therefore, there exists an mg € N, my > ¢ and by mono-
tonicity of I’ and (1)

P(sup X, = 00) < P(X,, > mp) < P(X,, > ¢) = 0.
T

Hence X, is almost surely bounded.

Book Exercises:
Williams [13|: Appendix E4: 2, 5, 6, 7.

Grimmett [7]: Chapter 1: 2.3, 3.7, 5.3, 8.3, 8.8, 8.16.
Chapter 2: 2.2, 7.2, 7.11, 7.13.
Durrett [E :  Section 2.3 (Solution Chap 6 - same problem # unless otherwise specified):

8 (6.4), 9 (6.5), 10, 14, 15, 16, 17, 18, 19, 20.

Folland [|§: Chapter 10.2: 14, 15.
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2.3 Day 3: Kolmogorov’s 0-1 Law

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

KEYWORDS:

oo
Tail o-algebra X,, L, define 7, := 0(X,, Xp41,...). Then 7:= ﬂ Tn-

n=1

Tail event Any F' € 7 (above) is a tail event.

* Fy = {w € Q:lim, X, (w) exists} € 7.
()FL ={we Q:limg X4 exists} € 7, (Vn) = FL €, 7w =T
*x [y ={weQ:) o, X,(w) converges} € 7.

()Note Fy = {w € Q: 37, -, Xi(w) converges} € 7, (Vn) = Fr €, 7 = T.

X1+ + Xy

* F3 = {w e Q:limy exists} € 7.

Xony1+ -+ Xogk
k

() F3 ={w e Q:limy exists} € 7, (Vn) = Fz3 €, 7 = T.

Careful! F, 6 ¥, a o-algebra, ¥, decreasing: ﬂa(fi,%n) K (9,“{%) ... Not in general!
Deciding when it is true is “a tantalizing prgblem”! "
X, = YoY1...Y,, where {Y,, L} & Y, = £1, w.p. 1. Let & = o(Y¥3,Ys,...) and

Tn = 0(Xg 1 k >n). Then {X,, L} and ﬂa(@,m) #o (@,ﬂm)-

()YO € ﬂO’(@,Tn) but Yo I o (@’ m" Tn)

MAIN THEOREMS:

Kolmogorov’s 0-1 Law Let 7 be the tail o-algebra of {X,, 1L}. Then:
(a) VF € 7 (above) = P(F)=0or 1.
(b) Vr.v. X 7-measurable (above) = P(X =¢) =1 (X = ca.s.) for some ¢ € [—00, +0].
Note We say that 7 is “P-trivial”.

Corollary: {X, 1} = P (X, X,, converges) = 0 or 1. Which one ? See “3-Series Thm”
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Proof outline of (a):

1. &, =0(X1,...,Xn) L 7 =0(Xns1,...). (.)Use m-systems: K = {w: X;(w) < x;,1 <i < n,z; € R)}
and J = {w: X;(w) <xj,n+1<j<n+rz; €RreN)}

2. X, L), ()7 CTa

3. Xo i=0(Xpn :neEN): Xoo L7 () s 1= U2, &, is a m-system generating Xoo, Koo L 7, 50 Xoo L Xeo.
4. 7CX = 7Tl7=>VFer :PF)=PFNF)=P(F)P(F)=0orl

Proof outline of (b):

c:=sup{z : P(X <2)=0}. Apply (a): P(X <=z)=0,1, V.

Take ¢, =c— 1, get P(X <¢)=0. Take c, =c+ L, get P(X <¢) = 1. O

Prove that Fy := {w € Q : lim,, X,,(w) exists} € 7.

Recall that {X,,(w)}52, converges <= {X,(w)}>,; Cauchy. Hence, Ve > 0,3IN € N>y s.t. n,m > N

= | X,(w) = Xpp(w)| < e (Vk € N). Thus, F; = ﬂ U ﬂ {w e Q| X,(w) — X;n(w)| < e}. Since
e>0N>kn,m>N
{weQ: |X,(w) — Xp(w)| < e} = (X, — Xpn) "' ((—¢,€)) € 7k, and we take countable intersections/unions

ete., F1 € 7, Vk = Fy € N7, = 7. To approximate e’s with a countable collection, consider %,l e N.
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2.4 Day 4: Integration

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

KEYWORDS: (Q,.%, 1) measure space. Assume 0 x oo := 0.

Notation u(f) = [, f(w) p(dw) = [, f dp.
p(f; A) = p(fla) = [, f(w) pldw) = [, f dufor A€ Z.

Note Sum is a special kind of integral: the integral’s form is tailored to the measure used.

Positive Simple Functions (SF*) 3n e NS.T. f =3}, arlg, (Ex € Z, ar > 0)

Canonical rep: ay’s distinct. All reps give same results.
Integral of an SF p(14) :=pu(A) <o (A€ Z).

Integral of a Positive Function u(f / fdu: 1 sup / gdu < oo

0<g<f
geSF"’
Note p(f) =supgespr  »,  au({w: g(w) =a})
acRange(g)

Positive/Negative Part f meas: f = fT — f~ with f* = max(f,0) & f~ = max(—f,0)
Note f*,f~ € SF* and |f| = f* + f~

Integrable Function f € L'(S,%, u) if u(|f]) = u(fT) + pn(f~) < oo

Integral of Integrable Functions f € L' [ fdu:= [ftdu— [f~ du
Note fe L' |u(f)] < u(lf])

MAIN THEOREMS:

SF+ Properties Let f,g € SF* and a,b € [0, 0]

(a) u(f) = 2hoy awp(Ar) < o0

(b) f =g pwad]= u(f) = nlg).

(c) (Linearity) af +bg € SFT and u(af + bg) = ap(f) + bu(g).
(d) (Monotonicity) 0 < f < g a.e. = u(f) < u(g).

(¢) (Max-Min) max{f, g} & min{f,g} € SF*.

1Reasonable def as SF* approx works.
2Specification of p: u ({w €N f(w) # g(w)}) =0.

30



Null f > 0 measurable: u(f)=0= f =0 a.e.
(DA = {w : fw) > £} ulf) = p(f; An) = nu(An) = nu(f) > p(An) = u(A) = 0.
{w: fw) >0} = UA"

SFT Approximation f > 0 measurable = Jaseq. v, € SFT S.T.0< ¢, N f.

n2"
k1
() Take @n =D o=t < puye g} T ML wrs)zn)f’
k=1

Monotone Convergence Thm (MCT) f,, f meas: 0 < f,, /' f = pu(fn) 2 u(f) < oco.
[f > lim po(fa)] p(f1) < p(fo) < ... (monotonicity) = limn—eo pu(fr) existd?f> f > limy, p(fn).
[f < lim pu(fa)] g € SF*, g < f. Fix c € (0,1), let A, := {w : fu(w) > cg(w)}.
So An, /@ and u(fn) 2 p(fas An) 2 cpu(g; Ar) = limy, p(fr) > cp(g) = limy, p(fn) > p(g)

= lim,, p(fn) > SUpgegr+o<g<r #(9) = p(f). o

“Monotonic sequences of real numbers have limits.

Breaking Monotone Convergence:

Consider the sequence of Borel measurable functions g, : [0, 1] — R, defined by g, (z) = —n—lml {z>0}-
1
1. nli)noloofgn(x)dm = nh_)rr;o(—oo).

1
2. lim g,(z) =0 for all z € [0,1] and thus [ 1i_>m gn(x)dz = 0.
0 n—o0

n—oo
1
We have a monotone seq. of functions, BUT the condition [ [g1(2)|[{u:g, (w)<0} (2)dz < oo fails.
0

Furthermore, fails hypotheses of the DCT: sup,, |g.| = %I{z>0} is not integrable.

Corollary: Also holds with a.e. : f, / f a.e. then = u(f,) / u(f) < oo.

(Let N ={w: fu X f} (W(N) = 0): gn = fulne & g = flye. Apply MCT (use [, = [y.)
Corollary: If u(A) = 0 then fA fdp =0Vf meas.

() True if SET ([, 1p dp = [ 1pna dp = p(E N A) <0)

Corollary: On ([0, 1], 2([0,1]), Leb): f Riemann-integ = f Leb. meas. and Leb. integ.
(".)See Stein p.57 Thm 1.5

SF* Integr Approx f > 0 meas. =3 a seq ¢, € SFT S.T. 0 < o, & f & ulpn) 2 p(f).
(-)MCT

a.e. Equality f=g¢ >0 pae = pu(f) =ulg). (. )MCT

3Basically, threshold y-axis at n, then discretize with step size 2%1
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Fatou’s Lemmata Elf 1 (8,%) = (R, B), g € L' (ie., u(g) < o)
1. fn > gae meas = p(liminf f,) < liminf u(f,)
2. fn <gae. meas: = p(limsup f,) > limsup u(f,)
Note Fatou = MCT: ()0 < f, 7 f ae. (solimsup = liminf = lim), g = 0:
Fatou = [ fdp= [lim f, dp <lim [ f, du
But f, < fae. = [fdu= [limf, dp>lim [ f, du

1. g = inf, >y fn A liminf, f,, = MCT: p(gr) ~ p(liminf, f,).
Now: p(gr) < pu(fn) Vn =k = plgr) < infp>p p(fn) = limy p(gr) < limy infr>p p(fn) = Hminf p(fs)

2. Apply (1.) for (g — fn) O

Breaking Fatou’s Lemma:(strict inequalities can happen)

]].[0’1/2], if n Odd7
Consider the seq. of Borel meas. functions f, : [0,1] — R, defined by f,, =
Lj1/2,1, ifneven.

Then limsup,, f,, = 1,1 and liminf,, f, =0

= [liminf f, =0 < 1 =liminf [ f, and [limsup f, =1 > % = limsup [ f,

Linearity f,g € L'(S,2,u): (af +bg) € L' and u(af + bg) = ap(f) + bu(g) Va,b, € R

Dominated Conv. Thm (DCT) f,, f meas, f, — f a.e. and 3g € L' S.T. |f,]| < g a.s.
= foo feLlie, u(lfa—f1) =0 = u(fa) = pu(f)
Corollary: Bounded Convergence Thm (BCT)
oo f meas, fo— fas. and 3e>0S.T. [fo] < cae. = u(fn) = u(f)

|fn — f|] <29 € L' = Fatow: 0 < liminf u(|f, — f]) < limsup p(|fn — f|) < p(limsup|f, — f|) = n(0) =0
= limu(|fn — fI) =0 = |u(fn) — ()| = u(fn — HI < (| fn— f) = 0. O

4@Greek Plural ®
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Breaking Dominated Convergence:

Consider the sequence of Borel measurable functions g, : [0, 1] — R, defined by g, (z) = n.I (0,2)-

1. nh_)rr;o]l{gn(m)dx =1.
2. lim g,(z) =0 for all z € R and thus [ lim g,(z)dz = 0.
n—oo R n—,o0
In this case, the smallest upper bound (the supremum) for |g,| is not integrable because

Ojlsgp{|gn(x>|}dx= Sa(t-) =t

n=1 n=1

so the condition about the existence of an integrable function that dominates the seq. fails to hold.

Show that: i]EHZnH <oo = iE[Z"] =E [i Zn] )

n=1 n=1 n=1

i.e.,g/|fn|du<oo = Ti/fnd,u:/[ifn] dp

n=1

(click)

(*) Let Y := Y E[|Z|] and Y;, := > E[|Z¢[] = MCT: E [Z |Z,|
k=1 k=1 i=1
= E[Y] < .

(*) Now let X := > E[Z] and X, := > E[Zi]: |X,| <Y, <Y, ¥n €N
k=1 k=1
= DCT: E[X,,] — E[lim, X,,] = E[X] (since by def, lim,, X,, = X)

= Z]E[|Zn|] =E[Y] < oo

Scheffe’s Lemma f,, f € LY fu — fas. = “ullfu— f1) = 0 <= p(|fal) = u(|f])"

(click)
=) [fal = 111 1 fa = f1 = 050 p(l|fal = [fI]) < |(lfn = f)] =0

(<) For simplicity, assume f,, f > 0.

Use p(fn) = u(f) to show p(|fn — f1) = p((fa — F)F) + u((fn — £)7) = 0

1. (fn—f)" :max(f—fn,O)émax(f,O)\Sf/f €LY fo— fas. = DCT: u((fn—f)")—=0
a0 0

fz
2. p((fn = /)F) = plmax(fn — £,0)) = u(fo — ) — plfa = fi fr < f) = ulfa) = 0(f) + p((fa = f)7) =0
Note General case: Fatou = pu(f¥) — u(f*) and apply the special case above. O
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2.5 Day 5: Radon-Nikodym

Main Reference(s): David Williams, Probability With Martingales, 1991

KEYWORDS:

Standard Machine To prove a “linear result” Vf € L' , take following steps:
(x) Prove result for f = 1g, E € X.
(x) Use linearity to prove for f € SE't
(x) Use MCT to prove for f € (mX)*
(x) Decompose f € L' as f = f* — f~ and use linearity.

Note Equivalent to using Monotone Class Theorem

Absolute Continuity v <« p if u(A) =0=v(A) =0.

MAIN THEOREMS:

Lemma f:Q — R meas., v(A) := [, f du. Then, v(-) measure on (Q,¥) and v < p. f:= g—l’:.

7

A;eX disj: v (U;4;) = fdu= lim/ Lur afdp= limZ/ fdu= limZV(Ai) = ZV(Ai) O
" - "im A =]

Ui A;

Radon-Nikodym v, ;i on (Q,%) S.T. v < pi. Then, 3f: Q = Rx>¢ S.T. v(A) = [, f du, VA e X.

Chain Rule Vg : Q — R meas., [gdv = [gf du (f def. above). Why chairﬂ ?
() For g € SF™: g=>""_, a;1g, (canonical rep.) = [gdv = [>"  a;lgdv=> " [algdv
So: [gdv =331 aw(E) =Y\ ai [1p.fdp= [ (Ciyailp,) f dp=[gf dp.
(x) For g € (mX)*, take g, € SFT S.T. 0 < g, /* g. Therefore:

Jgdv = lim,, [ g, dv = lim,, [ g,,f dp = lim, gf dp, as 0 < (gnf)  (9f) O
MCT above MCT

Lebesgue’s Thm ¢ : R — R is Riemann integrable < g is continuous A- a.e.

*fgdv=[g% du= [gf du.
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Summary:

Measure Theory: Probability:

J Ladp = p(A) E[l4] =P (A)

9>0= [gdu>0 X >0—E[X] >0

g=0ae = [gdu>0 X=0as. = E[X]=0

g<hae = [gdu< [hdu X <Y as. = E[X] <E[Y]

g=hae = [gdu= [hdu X =Y as. = E[X] =E[Y]

g>0ae :[gdu=0=g=0ae. X>0as :EX]=0= Z=0as.

Jlg+h)du= [gdu+ [hdu E[X +Y] = E[X] +E[Y]

Jagdp=afgdu ElaX] = aE[X]

MCT: 0< g, Sgae = [g,du 2 [gdu MCT: 0< X,, /' X as. = E[X,,] /E[X]

DCT: g, > g ae. , |go| <h€ L' ae =[g,du— [gdp | DCT: X, = X as. , |X,| <Y as. , E[|Y]] < co = E[X,,] — E[X]
BCT: |g,| <cae. ,g, > gae =[g,dp— [gdu BCT: |X,|<cas. X, » X as. = E[|X,, — X|] = 0, E[X,,] = E[
Scheffe: f,—f a.s. € Lh:u(|fn — f) = 0=u(| fo])—u(lf]) | Scheffe: X,, — X as. , E[|X,]] = E[|X|]] = E[| X, — X|] =0
g>0=v(A) = [, gdpis a measure f>0: [fdP=1= v(A)= [, fdP is a prob. measure

RN: v < 1= 3f:Q > Rog ST v(A) = [, fdu, VAES | RN: Py < Py = 3V : Q = Rug S.T. Py(A) = Bp, [Y14] = [,V dPy
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Chapter 3

Week 3: Expectation, Law of

Large Numbers & Applications
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3.1 Day 1: Expectation

Main Reference(s): David Williams, Probability With Martingales, 1991

KEYWORDS: (Q,.%,P) a Probability Space, LP = L?(2,.7,P).

Notation P(X) = [ X dP; E[X; F] = E[X1z] = [, X dP, VF € Z.

Expectation X s.t. X" or X~ € L E[X] = [X dP= [ X' dP— [ X~ dP (avoid co — c0)

Note ]E[X]:/Ooo(l—FX(gc)) dx—/o Fx(zx) dx:/OOOIP(X>1:) da:—/o P(X < z) dx.

— 00 —0o0

Integral 3 as P(X > z) Riemann integ. (monotonic = u(discont.) = 0, bdd.)

> P(X]> k)g/ P(1X|>z)dv<> P(|X|>k),s0X € L' & Y P(|X]| > k)<oo
k=1 0 k=0 k=1

Convex Function g:1 - Rs.t. g(Az+ (1 - N)y) < Ag(z) + (1 = N)g(y) YA € [0,1]

Note g convex = ¢ continuous on I. Also if g twice differentiable: g convex <= ¢” > 0.
1
LP Spaces p € [1,00): X € L? if E[|X[P] < oo; | X ||, := (E[|X|P])"; LP is a V—Spac

Truncation |X| € m%, X,, :=min{|X|,n} =X An= X, € LP,Vp>1, & 0< X,, /|X]|.

MAIN THEOREMS:

oo
Moments Calculation E[|X|?] :/ pa? P (|X| > ) dz
0

- o X @)
[ e (x1>0) do= [ [ g ixpne @) do= [ [T et dedpo)= [ 1xP dp)
0 0 Q QJo Q

O

Markov’s Inequality Z € m%, g : (R, %) — ([0, ], %) increasing: g(c¢)P(Z > ¢) < E[g(2)]

Elg(2)] 2 Elg(c)1z>c] = g(¢) - P(Z > ¢) o

Chernoff Inequality Y ar.v.: P(Y > ¢) < e %E[e?Y] V0 > 0,c € R (optimize over § > O)El

IX,Y €LP, | X+ YP < (|X|+|Y])P < 22 max{|X|P, |[Y|P} < 2P(|X|? + |Y|P). Take integral and conclude.

Elg(Z
2Proven by taking g : t — e?*. One can consider the ’best’ g(-) too, namely P (Z > ¢) < infs M, S is some
g€

9(c)
function space. Even more curiously, consider the gap |E[g(Z)] —g(e)P(Z >¢) | How small can we make it, namely

inf inf [E[g(2)] - g(c)P (2 > ¢)|.
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Chebyshev’s Inequality X € L% P (|X — E[X]| > ¢) < VarlX) We >0

C

Sum of r.v.s
* E[X] < oo = X < 00 as.
* Z 2 0: B[y Zi] = 3 (E[Zk]) < o0
* Y E[|Zk]] <0 = Z; — 0, as. .

* s EllZnl] <00 = 302, ElZn] =E Y02 Zn].

(Alternative Pf.) If >, P(Ey) < o0: Z = 1g, = Y E[Zy] <00 = Z; = 0, as. = Z;, =0

eventually w.p. 1 (as Z € {0,1})

Jensen’s Inequality g: I — R cvx., I open; X,g(X) € LY(Q,.7,P) = E[g(X)] > g(E[X]).

(Kallenberg) g cvx = g(x) = sup, ;(az + b) = E[g(X)] = E[sup, ,(aX +b)] > ElaX +b] = aE[X] +b =

E[g(X)] = sup, ; (aE[X] +b) = g(E[X]). o

Monotonicity of Norms 1 <p<r <oo = | X|, <|X|, = L" C LP.

Xp = (IX|An)P, g:3 2% cvx. = (E[X,])? <E [X;/P] = E[(|X] A n)7] < E[|X|"], MCT it. O

Cauchy-Schwarz X,Y € [? = [E[XY]| <E[XY]] < ||X|s|[Y]ls = XV € LL.
Corollary: XY € L2 = | X + Y2 < || X2 + |V |2

Wlog X, Y >0. X, =XAn, Y, =Y An. 0<E[(aX, + bY,)?] = a®E[X2] + 2abE[X,.Y,] + b?E[V2]

(Va,b). Convert to quadratic (in 2): b2 ((%)QE[X,%] +20E[X, Y] + E[Y,%]) >0 = A>0
— E[X,Y,]? < E[X2|E[Y;?] < E[X?|E[Y?]. MCT: 0 < X,,Y;, /* XY. |

Inequalities p > 1, % + % =1. f,g€ LP(S,E,,uﬂ and h € L1(S, %, u) (generic)
* (Holder) [u(fh)| < p(lfhl) < IfllpllAllq-
* (Minkovski)] [| £ + gll, < [ £l + ll9ll,-

el = (u(S) = (f 1517 dis) 7

4Directly implies vector space structure of LP.
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3.2 Day 2: Expectation and L” Spaces

Main Reference(s): David Williams, Probability With Martingales, 1991

KEYWORDS:

Covariance Cov (X,Y) :=E[(X — ux)(Y — uy)] = E[XY] - E[X]E[Y]
Variance Var (X) = E[(X — px)?] = E[X?] — E[X]? = Cov (X, X)

Inner Product (X,Y) =E[XY].

. Cov (X,Y) (X —px,Y — py)
Correlation = = , < 1 (Cauchy-Schwarz
PXY = R X Var (1) X — px allV = a7 Py 1 (Conchy )

Note Interpret p = cosé.

Orthogonality U L V if (U, V) =E[UV] = 0.

Note If py = py = 0, orthogonality = uncorrelated
Cauchy Sequence {z,}>2; Cauchy if Ve > 0,3N, s.t. n,m > N = d(z,, Tn) < €.

Note Alternatively, {x,} Cauchy if J\}im sup d(zn,zm) =0.d(-,-) =] - ||, for L? spaces.

—®n,m>N

MAIN THEOREMS:

Pythagoras U LV = |U +V|? =|U|]*+||V||* (L*norm).

Parallelogram Law |[U + V|2 + |[U — V||? = 2||U|]? + 2||V|.

Variance of Sum X;,..., X, € L% [| Var (X1 +--- + X,,) = ZVar (X)) + ZCOV (XZ-,XJ-)
n i#]

Completeness of LP X,, Cauchy in L? = 3X € L S.T. ||X,, — X||, = 0 (i.e., X;, = X€LP)

Pass to subseq. s.t. [|Xg,,,

= E[Y Xk — Xinl] < 00 = X | Xk
measurable, deduce (FATOU + V-Space) X € L? & X,, — X in LP. O

— Xk, |lp < 27", use monotonicity of norms: X:IEHX,%Jr1 — X |] <

i1 — Xp,| < 00 as. = X = lim, X}, (w) exists w.p. 1. X

5To make sure Var (X) < co.
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Orthogonal Proj. K C L? complete, V-Subspace.
(X-Y)LZVZek
VX eL? 3y e K S.T.
IX =Yz = inf | X — Z|
5 zek '
Note If Y € K s.t. one of above holds, then Y =Y, a.s.

Note Y is called a version of the orthogonal projection of X onto K.

Note Application: project L?(Q2,.#,P) onto K = L*(Q,9,P) (¥ C .7 o-algebra)

Expec. of Func. of r.v. h: (R, %) = (R, B), then E[h(X)] = /Qh(X(w)) dP(w) = /Rh(x) dPx (z).
Also, h(X) € L'(Q, Z,P) <= he L'(R, #,Py).

Verify for h = 1 (B € %), extend to simple fnc., generalize via MCT (standard machinery). O

PDF and Cont. r.v. X cont. r.v. if 3fy : R — [0, 0c] Borel s.t. F(x) :/ fx(z) dA(z).

(—OO,iL‘]

P
Therefore Px (B) = / fx(x) d\(z) and fx = dd—;(, Radon-Nikodym.
B

F(z) = P((~o00,2]) = /

—00,T

fx(x) d\(z). Define u(-) on (R, %) u(B) = /B fx(x)d\(z).

u(+) valid measure, agrees with Px on m(R) = {(—o0, 2] : € R}: uniqueness thm — pu = Px. O

Exp. for Cont. r.v. h: (R, &) — (R, %), then E[h(X)] = /Rh(x)fx(x) dx

Also, E[Jh(X)]] < 00 <= /R|h(x)|fx(w) dr < 0.
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3.3 Day 3: Strong Laws

Main Reference(s): — David Williams, Probability With Martingales, 1991 Chap.7

— Rick Durrett, Probability: Theory € Examples, 2010 5] Sec. 2.4

MAIN THEOREMS:

Independence and Expectation (X 1L Y)e L' = E[XY]=E[X|E[Y] = XY € L.
(X1Y)eL? = Cov(X,Y)=0& Var (X +Y) = Var (X) + Var (V)

IfX=Xt—-X",Y =YY", then holds if proven for X,Y > 0.

So, WLOG X,Y >0. 0< X,, /" X,0<Y, /Y, simple r.v’s. Prove E[X,Y,] = E[X,]E[Y,,] using
o(X) L o(Y). Conclude, by MCT as 0 < X,.Y,, XY = E[XY] =E[X]|E[Y]. O

Careful! If X and Y arenot L, (X,Y) e L' 4 XY € L!
c .
Example: X : (Q F) — (N 2M): P(X =k) = kQ—Jr (Wlth e€(0,1) and Y = X.

Then E[X] = Z pire <0 and E[XY] = Z e =
Proving X,, 2% 0 Let {X,,}52, r.v.
(a) 3s > 0 s.t. ZE[|Xn|S] <o = X, %0

(b) Ve > 0s.t. Y P(|Xp|>¢) <oo = X, *30.

m>n

a.s,

Z|X |S]<°°:>Z|X ® <00, as. = |X,|* Z50=> X, 25 0.

n

(c) X, 250 «— ILm P(sup |Xm|>€>:0,v»3>0

(a) By MCT, ZIE|X ]

n—oo

1
(b) Fix e = 1. By BC1, {|X,| > 1} occurs finitely often w.p. 1 = P (limsuan > E) =0

1
=P(J {lim sup X,, > E} =0 (union of null) = limsup,_,., X, <0, as. = X, 2% 0.

n—o00
k

(c) Notice RHS equiv. to P (|X,,| <&,Vm>n) - Lasn — oo: Ay, i={w € Q: [ X (w)| < &,¥Ym > n}.

An N UA = (since | X,,| &% 0), hence P(4,,) — 1. O

41



n>1 n

X1+ +X E[| X
Est. for the Max. of Avg. (EMA) X,~X i.id. XeL: P <supM > a) < X1}
(*.)See Lecture 18 LLN from Yury 6.436.

Kolmogorov’s Maximal Ineq. {X; L} € L? E[X;] =0, Var (X;) < o0, S, = X1 + ... X,,.
Var (S,
Then: P(m}gx [Sk| > > g%, Yz >0

Var (Sn)

Note Chebyshev: P (|S,| > z) < , Vo >0

Note Recall Kolmogorov 0-1 law: thls ineq. helps proving P(4) = 1.

Let Ap = {w € Q: |Sip(w)| > z,|9;(w)| < z, Vj < k}.
Notice {w € O : [ |Sk(w)| >z} = UAk & A,NA; =@, i# j: then

o > 1u,a, = Z]lAk:>IES2 Z]E[]lAkS2] ZE[IAk(Sk+Sn—Sk)2]

= E[52] ZE[nAkskﬂlAkzsk(s — S) + 14, (Sn — Si) ] _Z( [nAksk]+]E[11Akzsk(s —Sk])
k

As Sk]IAkGO'(Xl,.. )&(S —Sk)EO'(Xk_;,_l,...,X) SO Sk:]lAk (S —Sk)iE[lAkSk(Sn—Sk)] 0.
Hence E[S2] >ZE[]lAkSk >ZIE:E la == ZIF’ (Ap) == ]P’(max |Sk|>m> O
k=1 k=1 k=1

Strong Laws of Large Number

2
(1) Kolmogorov (Not ID but L?) {X,,} € L? 1, mean {ju,}, variance {02} s.t. Z % < 00

n

(2) 6.436 (11D but L?) {X,,} € L? i.i.d., mean pu, variance o2
(3) Khinchine (IID but L') {X,,} € L' i.i.d., mean u
(4) Durrett (IID but E exists) { X, } € L' IID with E[X,,] exist{f] (i.e. E[X*] or E[X*] < c0)

1
— ZXk 2% . If not LD. - Z(X,c — ) Z50.
k=1

Note SLLN needs E[| X|] < oo (cf Week 2 Day 2): if E[|X|] = oo, then limsup % =00 a.s.

Assume X; > 0, generalize via X; = X;F — X;.

(4) Durrett: WLOG E[X;"] = 00, E[X; ] < oo (E [X] exists).
SM
Let XM := X; A M (truncate at fixed M) & SM = ZXM SE i 2oy BIXM).
in L? n n
M
Now, X; > XM = liminf% > lim% =EXxM = MOT E[XM] /E[X;] = 00 = liminf% =o0a.s. O
n n n

6Note that the mean can be infinite!
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n Sn
(1) Kolmogorov: S, = kz:(Xk — ) Ay = {w E e g B |n_| > a}.
=1 -

{ max [Sul >e}:{3n€[2k1,2k] 8.t.|Sn| Zns}C{ max  |S,] 22k16}c{ max |S,| > 2~1 }

2k—1<n<2k N k—1<n<2k 1< <2k
. k—1 _
Apply Kolmogorov: P (A;) <P <1£171La<x2k [Sn| > 2 > —— Var (Sor) = = 2% ZO’
(o] 4 o0 o0 o0
NOWZP(Ak)S_QZZQ_kUl: Z > 221;—52212 ==P (A Lo. ) =0.
k=1 k=1i=1 =1 k=log, i
S n Sn a.s.
Since{Aki.o.}—{l—n|2 } <1msupn| |<E>—1Takes—%—>0:7—>0.
. Sn
(2) 6.436: Notice E | [ — — = Var
n
Sk2 a.s,
k2

Sk:2 2 > 0'2 Lemma (a SkZ 2 a.s.
| ‘”:Zﬁm W u) 0
e . Sk2 == 1 O' Lemma (bg Sk2 a.s.
OR(.)F1X8>O. E P ?—/,L > € SE ——2 — U

k2 ¢
k=1 k=1
 Onasy
n
K2 S Sn _ (K+1)2? Sug) S ..
‘)Take k2 <n < (k+1)2 ——— <t < . Bk 28,
()ae _n_<+) (k+1>2 k.Q—n— k2 (k'—|—].)2 - 1%
A d ——
—1 E}N —1 LS')#
Xn
Note (Durrett Thm. 2.3.8) Suppose 0 < X,, *rv., 0<¢, 7. Goal: show —= 2% ¢,
Cn
s X,
Idea: pick subseq. {cn, }32; s.t. ck+1 — 1. Show that : Pk 2% ¢ and conclude.
Nk Ny
(3) Khinchine: Idea: Truncate, so € L?, bound difference via estimate for max. of avg.
Yit-+Y, Ditt

Let Yn = Xulx, <k, Zn = Xnlx, >k Tn = —— " A " and Z* = sup [t 2] n|.

N n n>1 n

S

P<Sup |—m|>a> — 0.
m>n
Sm T

(*.")Triangle inequality = [Sm] < [Tm] L 7

m m
= P supm>€ <P supu+Z*>s <P supu>i +P Z"‘>E .
m>n 1 m>n TN m>n TN 2 2

—_—
=A =B
Notice |Y;,| < [X,| € L' 225 [E[Y,]| — E[X,] =0 as k — 00 & Z, — 0 as. = E[|Zp]] =400 0.
Z
Choose k large : |E[Y, ]| < £,E[|Z,]] < 5. By EMA, B < 8“/2” < 0.
T, T — E[T,
Next, |Tp,| < T, — E[T3]] + [E[T)]]: sup Tl > = sup [T = EfTw]| > <
Ty — E|T,
Thus A < P (Sup [T = E[Tm]| > E) — -0 0, as SLLN holds for L2.
m>n m 4

5]
Hence, lim sup P <sup [m] >s) <§ = P <sup | m') — 0, as n — oo.

n—00 m>n m>n 1M
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EXERCISES:

(Durrett 2.5.1) Let X, X5, ... iid, E[X] =0, Var (X) =C < o0, and S, = X; + ...+ X,,.

Sn as,
Use Kolmogorov’s Maximal’s Inequality to show that — 2% 0forp>1 /2.
n

Fix a subsequence n = m® where a(2p — 1) > 1.

Let A, = qw e Q: max [Sk| > (m —1)%Pe 5.
(m—1)*<k<mo
1 Cm® Cm® 1 C . 2%

By KMI: P (4,,) < Var (Spe) <

52(m _ ]_)2ap 52(m _ 1)2042 — EQ(m/2)2ap — mo(2p-1) ’ e2

[ Co2ap X
So S P < L2 S L 0 BB p((4,, 0. }) =0
m=1

2 me(2p—1)

m=1
= max |Sk| < e(m —1)°? for a.a. w for sufficiently large m.

(m—1)*<k<m>
op, 196l ISkl elm—1)r
5 kP T (m—1)°P = (m—1)er

k

Hence, lim sup —— < ¢ almost surely. Taking e = % N\ 0, countable, we conclude.
k—o0

In particular, Vk € [(m — 1)*,m =cae. .

o

X
Alternative Solution Notice, it suffices to prove (due to Kronecker’s lemma) that Z —; < 0
n

n=1

oo Xn oo
a.s. , which holds (Kolmogorov 2-series) if Z Var (H) = Z % < o0, which is true since p > %

n=1 n=1




3.4 Day 4: Application of SLLN

Main Reference(s): — David Williams, Probability With Martingales, 1991 Chap.7

— Rick Durrett, Probability: TheoryéEzamples, 2010 [5] Sec. 2.4/5

KEYWORDS:

n
Empirical CDF (E-CDF) {X; iid} ~ F, then: F,(z) := £ Y 1{X,, <z}
1

m=
Note F,(z) counts the frequency of the observed values that are < x.

MAIN THEOREMS:

Glivenko-Cantelli / CDF Approx F, = E-CDF: lim sup|F,(z) — F(z)] =0 a.s.
n— oo xT

Fo(o—) i= % zn: Lx<o 2% F(z—) = P(X < @). Take k, @, := inf {y  F(y) > %}

IN(w) S.T. |El(xj,k—) —F(zjp—)| < 1, & |Fa(zjk) — F(zjp)| < 3, 1< j<k—1,n> N(w).

Claim: F(z;r—) = limg »;, , F(z) < %, asx < zjp = F(z) < %

Claim: F(z;x) > %, as i =1inf{...}, Jyp € {...} S.T. ypn \vxjr = F(zjx) = limy, 0, , F(yn) > %El

Now z € (zj_1,5,Tjk) = Fn(z) < Fo(zjr—) < F(zjr—) + % < F(zj_1k) + % < F(zx) + %

Similar argument = F,(z) — F(z) > -2 = |F,(z) — F(z)| < %, Vz, Vn > N(w).

%Argument uses right continuity of CDF.
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Renewal Process {X; iid} with X; € (0,00) a.s. , and T}, := X1 + ... + X,, (n*® arrival time).
Nias,
t E[X]

Observe that T, <t < Tn,+1 and that ¢t < Ty,+1 = Tn,4+1 — 00 = N; — 00 (can’t be bddﬂ

1
Let Ny :=sup{n : T, <t} (# arrivals before t) = (works for o 0).

TN t TN +1 Nt + 1 t a.s,
Ty <t<T L€ — < g — = E[X].
Ne SUS AN = N, = N — Ne+1 N :>Nt X
~— ———
25%E[x] EBEX] 231
T, T w N, 1
(.")Since Ny 7 oo a.s. SLLN —"(w) LN E[X] so —Nt(w)( ) LEEN E[X] and —t(w) L 2501, O
n N (w) Ni(w)

%To be more precise, Ny /oo a.s. , as t — oo.
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Chapter 4

Week 4: Convergence of Random

Series & Large Deviation
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4.1 Day 1: Convergence of Random Series

Main Reference(s): — David Williams, Probability With Martingales, 1991 Chap.12

— Rick Durrett, Probability: TheoryéEzamples, 2010 [5] Sec. 2.4/5

KEYWORDS:
0o N
Convergence of Series Z an converges iff hm Z a, existg I
n=1

MAIN THEOREMS:

SLLN (Etemadi Ideas) (IID, L'){Xz} L, E [|Xs|] < 0o, EX} = 11 = & s

Lemma 4.1.1.

(a) L@tYk :Xk]].{|Xk-|§k €§T _ZYk Then_nﬂ)u ES &2}
o)
Var Yk
() Y P < amx] <o
k=1

(click)
(a) P (Xy # Yy, i.0. ) =0. This shows P ( —) 0)

ZIP X # Yy) <ZIP’ |Xy| > ZIP’ |X1|>k)</ P(|X:1| > z) dz =
k= 1 0

(b) Z Var Yk) i Yk

k

E [|X1]] < oo, BC-1.
= 1
’;k—/ 2P (|Yi| > y) dy—2k2/ 2P (|Yi| > y) dy
k
/ 2yP (| X| > y) dyézﬁ/o Liy<ky29P (1X] > y) dy
k=1

< Var (Yk)
S0.0

IA
WMEEH

1
1
7.2
k=1 1k 0
>, Var (; e = 1 o (221
s, 5 <[5 i g2 (X1 >) dy = [ (2 gt | 28 (1>0)
k=1 k k=1

(o)

1 2 Var (Y (2
Z ﬁ]l{ydc} < o This shows that Z ar—k) < /0 (5) 2yP (|X| > y) dy
k=1

k=1
1 <1 1
= —dr=——<"-.
()ékzz y—1 T2 y—1

=4E [|X1|]

< | N

%Here, we assume y € N, and y > 2. For slightly more rigor, use floor functions (see Durrett p.74 .)

oo

1If a,, > 0, then either E ap < 00 or = 00, but it necessarily exists

n=1
2Different from Yy = X, 1{|Xy| < n} for fixed n (see SLLN proof)
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o0

Kolmogorov 2-Series (L) {X, L}, Z EX, <> & ZVar ) <oo = ZX < 00 a.s.

n=1 n=1

WLOG, prove for X,, L E [Y.]=0 (X'n = X,, — n, hence ZX" <0 — ZX" < 00).
n n

n
Z X, is Cauchy, via Kolmogorov’s maximal ineq (KMI).

To prove convergence, need to prove S, :
k=1
1 1 & 1 &
3 2
KMI = P ({Mrgnr%}éN} |Sm — Sm| >e ] < E—QVar (Sy —Su) = = Z T o Z o
n=M+1 n=M+1
1 o0
]P’(sup |,S*m—SM|><€><—2 G ——— 0L
m>M € M— o0
= n=M+1
sup |S, — S| < sup [Sp, — Sum|+ sup | Sy — Sy|. Clain: A= lim Ay =0 as.
n,m>M n>M m>M M — o0
::AM ::AM ::EM

Ay > Ay > >20=> lg\r/lnAM exists a.s.

e i P - : _
Trick: imP (Ay > ¢) < lhr/InIP’({AM >e/2}U{By > ¢/2}) < lhr/[n]P’(AM > €/2) -I-lhr/ln]P’(BM >¢€/2) =0

Now, 0—11m]P’(AM>5 ﬂ{AM>6} >PA>¢e)soP(A>e)=0 (. )Nu{Am >e} D {A>
€}

So lim P(Aa>2)2p (| Jlas 1| =p@as>0=0 = a=o0 O
o Jm P2 )= 7f | =FO>0=0= a=0es

k

C<A+Brvs:P(C>e) <P({A>¢/2}U{B >¢/2}) <P(A>¢e/2)+P (B >¢/2).

Kolmogorov’s 3-Series (1) {X,, L}, A>0&Y; = X;1x,/<a: Then Z X, converges a.s. <

(i) Y P (IXn] > 4) <0
n=1
(i) Y E[Y,

(ifi) Y Var (¥;,) < oc.

n=1

(=) CLT (Durrett [5], Example 3.4.7)
€)Y P(Xn #£Yn) < D P(IXa| > A) < 00 255 P(X, # Y, i0. ) =0

=1l n=1
This shows that > X, < oo <= } Y, <oco. End: apply Kolmogorov’s 2-series on {Y,,}. O

Kronecker’s Lemma a, oo & Z — <0 = Zxk — 0.

" k=1
(.)See Durrett [5] p.81; Wﬂhams 3| p.117.
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SLLN Alternative Proof (iid, L') {X;iid}, E [|X |] < o0, then & 250
n

Y, b Y
As before, Y, == X1 x,|<n, Tn = M

n
S, T,
Claim: (7" 25 u) = (Fn 25 u). (".)see Etamadi’s idea (a)

Claim: Z, := Y, —E[Y; ]Then—ZZkiso.

k=1
Z Kol = Z K ke 1
Var < 00 = Var < oo —EK <o as —M=% er’s Z
Z ( ) Z n 2-Series Z n Lemma, Z k7

n=1 n=1

1 _ X, if |[X]|<n,
Claim: (Kolmogorov Truncation Lemma) — ZIE Yi] = p. Use Y, = .

Lt 0, if |X]|>n.
(.)We have Y,, 2V, = E[Y,] = E[Y,].

: § 1
Y, 2% X and |V,| < |X| 2= E[V,] - E[X] = p =22 ZIE [Yi] = O

Kolmogorov Truncation Lemma {X,} X, Xel

E[Y,] = E[X]
Xna .f Xn S K 1
Y, = if | Xn| <n — ) PV, #X,i0 )=0
0, if | X,| > n. =, Var (Yy,)
> 2 =
n=1

(*.")see above
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Xu] = 0& Var (X,) = 0% < 00 = ——" Sn as
w3 (logm) 1+
Sh

Note Kolmogorov’s test (Durrett [5], Thm 8.8.2): limsup —————
n—oo n2(loglogn)z

(click)
oo Xn

oo
0’ Kolmogorov
VaI‘ - <0 /= — < 00 a.S.
Z ( % log n) 5+e ) % Z logn 1""25 2-Series 7;1 n%(log n)%"‘E

L? Rate of Conv. (iid, L?){X,, #id}, E|
=oV2as.

Kronecker’s l . Xk . a.s. 0 0O
Lemma N o k2 (log k)§+5
L? Rate of Conv. X; iid, E[X;] =0 & 3p € (1,2) S.T. E [| X; 7] ) ' 1/ —
n

Note This applies to case where second moment might possibly be infinity.

Sn as
Converse: p > 0: Y 30 = E[|X1fP] <o

o0

Similar techniques, Y := Xj1|x,|<j1/»- Start with Z]P’(X;C # Yk) Z (1X:]P > k) < E[|X]P] <
k=1 [=1l
Yi+---4Y
Hence, suff. to show L e 23%0. O
nl/P
Infinite Mean {X; iid}, E[|X;|] = co, S, = + Xn & {an €RL} ST L2
n
Z]PJ |X|>an)<c>o:>hmsup| "| Z (1X:| > ay) oo:>1imsup|—:

n—oo
n=1 n=1

o1



4.2 Day 2: Large Deviations

Main Reference(s): Rick Durrett, Probability: TheoryéExamples, 2010 [5] Sec. 2.6

KEYWORDS:

Moment Generating Function Mx(s) :=E [esx }, whenever finite.

Rate Function For any a > 0, ¢(a) := sup (sa - log]E })
s>0

MAIN THEOREMS: Assume {X,} iid and E [X;] = 0.

Chernoff Bound {X,}iid, E[X;] =0 = P (S, > na) < e "¢ Mx () a55uming My (s) <

oo over s € [0, ¢], for some ¢ > 0.

E $-Shp
P(S, >na)=P (eS'S" > es'”“) < % = ¢~ (0108 Mx(s)) yging Markov Ineq, and Mg, (s) = Mx(s)™
Note If M(s) = oo everywhere, then ineq. above trivial. O

Existence of the MGF X >0 and 3¢ > 0S.T. Mx(c) < oo: Then Mx(s) < oo Vs € (—o0,¢].
Note Hence, once we have MGF to be finite at a point, we realize that it is finite on an

interval, therefore we can take e.g. derivatives etc.

MX(s):E[eSX}:/ eSXdIF’+/ eSXdIF’S/eCXdP+1:1+MX(c)<oo. O
{w:X (w)>0} {w: X (w)<0} Q

Differentiability of the MGF X > 0 & Mx(s) < oo Vs € (—o0,¢] for some ¢ > 0. Then

hX _ 1 E hX7 _ 1
EX] L E | lim | 2 i B[] -1 a
h AN h
dk

o Mx () = [XkesX].
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R

(a) E[X*] < oo, Vk
(-.)Recall z* < e for x large enough (i.e. x > a for some a).
E[Xk]:/xk(w)dp(w)z/ X’“dIP’+/ X’“d]P’g/ estIP+ak/1dJP>
Q {w:X(w)>a} {w: X ()<a} {wi X (@)>a} )
So E[X*] < Mx(s) +a* < o0
o0 k kxk k
1 5 o X _ (SX) s" X X S k
Alternative Proof: Taylor: e’* = kz i > o = E [es ] > F]E {X ]
=0
(b) E[X*esX] < oo, for every s < ¢ and Yk

() Recall z¥es® < e5'% Vk, 5,5 with s’ € (s,c) for z large enough (i.e. 2 > a for some a).

E[X*esX] = / X*(w)esX @) dP(w) = / XFesX dp + / XFesX qp
Q {w: X (w)>a} {w: X (w)<a}
So E[X*esX] < / s X dP + ak/ e’ dP < Mx(s') + a*e* < oo
{w:X(w)>a} Q
(c) (e"X —1)/h < XeMX
()Let f(h) = "X MTZ“—¢> 3t € (0,h) ST. f(h)— f(0) = hf'(t) = "X — 1 = hXetX < hXehX
eorem
hX _ 1
(d) Ex] 2 E [lim € ]
h\O
ohX _
()X = }ILI{‘I}) by definition of the derivative of e"* with respect to h is XeX evaluated at 0.
(s+h)X | _ sX
Similarly. iMX(S) = lim Mx(s+h) = Mx(s) = lim c [e ] c [e ] = £ [esX(th — 1)]
" ds AN h AN) h h ’
(h+s)X | _ sX
(e) E | lim e —th -1 ) lim : [6 } : [6 ]
R\.0 h h\.0 h
th -1 X A0
(".)We have g, (X) := X = gn(X) =25 XesX and by (b) & (c): gn(X) < Xeht9)X ¢ L1(Q,P)
E |:€(h+s)X:| —E [eX] hx
. _ h\0 sX | : sx € —1
— lim 2 —E [g(X)] =25 E [Xe™| = E Jim ¢ ] O

Str. Convexity of Log MGF M (s)<oo for s € [0, c] = h(s)= sa—log Mx (s) is strictly concave

T

o & _ 4 Mi(s) _ ME(s)Mx(s) — Mi(s)’
We now know Mx (s) differentiable, so a2 log Mx(s) = ds Mx(s) Mx(s)?
e premien e (e faire)
So —— log Mx(s) = c h-zs.h =0
ds? Mx(s)? iy Rl Mx (s)?

d2

To get strict concavity, recall that Cauchy-Schwarz is strict unless X2e*X = ae*X a.s. , which happens if

X = /a ass. . Unless X is a degenerate r.v., the log MGF is strictly concave. O
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Tighter Upper Bound If M (s) < oo for s € [0,¢] & a > 0, then:

P (S, > na) < e @ Vn > 1; where p(a) := sup [sa —log Mx(s)] >0,
s>0

! *
where sup [sa — log Mx (s)| = s*a — log Mx (s*) with s* is S.T. My (s") La
s>0 Mx (S*)

Claim: : § <0 = sa —log Mx(s)

0. Hence, can restrict to s > 0.

(s) <
()sa —log Mx(s) = sa — logE [ ] o S0 — [log esx] =sa— sE[X] =sa <0.
Claim: 3s € (0,¢) s.t. (sa—logMx(s)) > 0.
N s E [X]
(.)%szo(sa—log]E[e ]):a—E[OX]—a>O. O

Convexity of Rate Function ¢(a) := sup(sa — log Mx(s)) is convex Va > 0.
s>0

Corollary: ¢(a) is continuous on (0, c0)

Notice, ¢(a) = sup,~g fs(a), where fs(a) = sa —logMx(s). Each fs(a) is affine in a, hence, ¢(-), being

pointwise sup of family of affine functions is convex.

Analysis (e.g. Rudin) = “convex = continuous” O

Log MGF Asymptotics X S.T. Fx(z) < 1Vz € R (X does not admit a finite upper bound)
. log M(s)
= lim ————= =

5—00 S

Fix b> 0: Mx(s) = E [esx] —E [IE [63X|11X>,,]] > PP (X > b).

log M 1
P(X>b)=1-Fx() >0 = ogT(s) >b+ ;log(]P’(X > b)) Vs large enough.
log M 1
— lim OgT(S) > b+ lim ~logP (X > b) = b b large enough (as P (X > b) > 0= log P (X > ) > —o0)
logM(s)

As b — oco: lim >1mb——|—oo O
5—00 S b— 00

Corollary: Va > 0, 1i>m (sa —log Mx(s)) = —oo.
§—00
(-)sa — log Mx (s) = S<a _ log Mx(s) )
s

—+o0
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Tight Lower Bound Assume X ~ fx is continuous, E[X] = 0, Mx(s) < oo Vs € R, and
0<P(X <a)<1lVzeRf]
Then: nli»nolo % logP (S, > na) = —p(a), Va > 0.
Note So Chernoff bound is tight: e nela)te) < p (Sp, > na) < e @) e > 0, Vn large.

(click)

1
From upper bound, limsup — log P (S,, > na) < —p(a). Hence, we need to prove the other direction.
n—oo N

sy & by, . L

6 cs”) My ($%)

3Namely X has full support on R, so r.v. does not admit a finite lower/upper bound.
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EXERCISES: From Durrett Chap. 2.6

(click)
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Chapter 5

Week 5: Product Measures &

Conditional Expectation
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5.1 Day 1: Product Measures

Main Reference(s): David Williams, Probability With Martingales, 1991

KEYWORDS:

Coordinate Maps 7 : S1 X Sy — Sp, M2 1 S1 X So —= Sa, mi(x1,22) = 21 & ma(x1,22) = Xa.

Product o—Algebra (S7,%) and (S3,¥2) measurable spaces. Then:
S1x 8 i= o(m,m) = 0 ({7‘1‘1—1(31),71'2_1<Bg) Bl €%, By € 22})=a ({B1 x S5, 81 % By : S1,€ 51, 85 € 5,}).
Note By x S1 and So X By=oco-strips; By x By=rectangle
Note (S,%, ) ;/j (51,21, 1) X (S2, X9, p2)

Product Measure Let F € ¥ := Y1 X Yo:

w(E) = / / 1g duy dps = / / 1g dus dpy (using the bY integral order swap).
S J Sy Sa2 JS1
In particular, E = Ey X By (E; € 8;)) = u(E) = p1(E1)pe(Es).

Joint Laws Pxy : Zx % —[0,1] ST.Pxy(E)=P((X,Y) € E),VE € X x

Joint CDF nyy : R2 — R S.T. F)Qy(l‘,y) = P(X < 1‘,Y < y)

MAIN THEOREMS:

oco-strips bounded rectangles

Product o-Algebra Characterization m = 0’({ ,B_l/x?g 1By €3¥q,By € Eg}).
Note The rectangle generator is easily seen to be a m-system.
A:={51 X By,B; x S3:B; €¥1,B2 €Y} & B:={By X By: By € 31,B5 € ¥s}.
(S1 X Ba)N(By x S3) = By X By = By X By € 0(A), forall By € ¥1,B3 € X5 = B Co(A) = o(B) Co(4).
B; x 35,51 x By € B= AC B = 0(A) Co(B).

Hence, | 1 x 5 = o(4) = o(B) | O
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Meas. Check f:(S1 xS2,%1 xX2) — (R, £): / f(z1,22) dpa(z1) dpe(x2) makes sense <
Sy J S

(1) Va1 € S1, 29 — f(x1,22) Xo-meas. (iii) »—)/ f(z1,22) dus(z2) Xi-meas.
Sa

(ii)Vxq, f(x1,22) po-integrable (iv) =y |—>/ flx1,x2) duo(x2) pi-integr.
Sa

We will use Monotone-Class argument.

(i) Let H = {f: (S1 x S2,%1 x E3) = (R, #) bdd S.T. (i) holds.}.
— f,f € H. zo— f(z1,22) + fx1,22) is Ly-meas., sum of meas.
— f(x1,22) =1 = z9— f(x1,22) =1, Va1, & 1 € mXs.

—0< foo /N f = Va1, 0 < fulzr,22) 2 f(21,22). 9% (22) = lim gi'(z2), meas.
—_— — n—o0

=gt (z2) =g71(z2)

— {B1 X By : By € X1, By, € X5} w-system. f:= 1p, «x5,(x1,22).
1 ¢ By = a9+ f(x1,22) =0 € mXs.
21 € By = z2+— f(x1,22) = 1, € ms.
(iii) Let H = {f : (S x S5, %1 x ¥3) — (R, #) bdd S.T. (iii) holds.}.
— g Fet o [ (orwn)+ Fara) dine) = [ fara) diaten) + [ ) duate).

—f(xl,xg)zl — .’E1P—>/ 1d/1,2:}1,2(52
Sa

. C
—0< fo A = Vau, lm [ fu(an,@e) dus(we) = [ f(a1,@2) dps(w2), so pr-meas.
n—o00 So Sy

f1-meas

— {By X By : By € 31, By, € 35} m-system & f := 1, xB,(x1,22):

$1¢Bl — T > Odu2(m2)=0€m21.
Sa

T € By — f(x1,22) dpg(xs) = / 1, duz(x2) = p2(B2).
Sg S2

Hence, 1 — / 1, xB, (%1, 22) dua(z2) = p2(S2)1p, (x1) € m¥;.
Sa
(if) and (iv) 3B >0 S.T. |f(x1,22)| < B & p1 2 finite = integrability. O

%This requires finiteness of ps. Will also comment that results hold for o-finite spaces too. However, for non-o-finite
measures, it won’t hold; as will be exhibited via an example later.
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Integral Order (bY) V bdd & meas. f: (S7 X S2,%; x ¥a) = (R, A):
| [ forss) duataz) dntan) = [ [ for,0) dus(en) dua(e). (+)
Sl Sg SZ Sl

H={f:(5 x 852,51 x3) = (R, %) bdd, S.T. (x) holds}. GOAL: H mon. class.
— H vec. space. v
— f(+)=1=RHS = LHS = 1 (51)pa(Ss). v
o<t s piett [ [ pdman=[ [ i g dn [t [ g i do

S n—oo
fn€H MCT
" i f dpiz dpr 22 tim / / fo dpir dpp M [ tim / fo dpis dsa
n— oo Sl 52 SZ S n—o0
C
E T/ / Hm fn dpy dps = / / [ dpa dps
Sz S SZ Sl
— f = ]]'E1><E27 then RHS & LHS eval. to J25% (El)uz(EQ). O

Uniqueness of Product Meas. p = p1Xpus = unique meas. S.T. u(E1xEs) = p1(E1) X g (Ea)

I ={FE1 x Ey: Fy € 31, Ey € ¥}, m-system generating ¥ x Yo

Apply uniqueness theorem (p(S; X S2) < oo, as finite measures). O

Fubini’s Theorem (S;,%;, u;) (i = 1,2) o-finite meas. spaceﬂ (S, %, 1) = (S1, 21, p1) X (Sa, Xa, p2).

IF either: OR / [fldpa dpe < o0
Sa /S,

THEN:u(f>=/S1XsQfd<u1xu2 //fdugdul /SQ/Slfdulduz

Already proven for bY, in particular for SF*.

For any f >0, take 0 < f,, * f, fn € SET, and apply MCT.
If u(|f]) < oo, then do |f| = fT — f~ & use linearity. 0

Measurability of Diag. (S1,%1)=(52,%2) =(R, %), D ={(z,y) eR* :z =y} = D € B x B.

1We have proven until this point the results for finite meas. spaces. For o-finite meas. spaces, it is all of a matter
of breaking into countably many pieces of finite measure, and then arguing via MCT.
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(click)
(1°* Way) Let f: R? = R be f(z,y) =  — y. Proj. maps meas. = f % x % meas, D = f~1({0}).
(2" Way) D°={(z,y):z #y} = |J{@v) 2> q¢>y} = (g 0) x (-0,9). (¢,),(~0,9) € Z.

q€Q q€Q
Rotation

(3" Way) Vertical lines {z} x R are meas. =—==== diagonal is meas. O

Invariance

Breaking Fubini: NON o-finite (counting) measure on ([0, 1], A).
Let (S;,%;) = ([0,1],8) (i =1,2) & p; = Lebesgue & ps = counting. Then D diagonal:
[ [ votenee) dua dis = [ pa(Gan}) dis(or) = m(0.1) = 1.

81 /8, S

/S2 /Sl Ip(x1,®2) dpy dug = / p1({z2}) dua(xs) = 0.

| (D
N
.

Breaking Fubini: Discrete nonnegativity and integrability.
Let (S;,%;) = (N,2%) (i = 1,2) & P; = P, = counting (i.e., P(4) = |A|).

Then:/AgdPl:Zf(a)& /hdIP’g—Zh /Cfd]P’lx]P’g > flo).

acA beB ceC
1 -1 0 0
flm,m) =1 0 1 -1 0
Let f be S.T. fimym+1) = -1 = visually: 0 0 1 =1
f(z,y) = 0 elsewhere. 0 0 0 1

so- [ Q2fd]P’1d]P’2=zn:;f(n,m)=0#1=;;f(n,m)=/QZ [ pav,a,

Fail: here, f is neither nonnegative nor integrable (Z |+1| = oo).

Breaking Fubini: Continuous nonnegativity and integrability.
Let (S1,%1) = ((0,1),8) and (S2,%2) = ((1,00),8) & Py =P, = Lebesgue.
Let f(x,y) = e~ — 272" (can take positive and negative values)

1 0o 1 oo
So: / fdPy dIP’2=/ / flz,y) dyda:>0>/ / flz,y) dz dy.
Q1 JQo 0 J1 0 J1

Fail: here, f is neither nonnegative nor integrable.

.




Exp. Value : Area under Graph X : (Q, X P) —» (R, %, )\), X >0, p-space (2 x R,P x \).
Graph of X = {(w,2) : 0 <z < X(w)} C Q x R (check it is ¥ x -meas.).
)

Area of graph : (P x A)( graph of X) = / Lgraph of x d(P X A).
QxR

Do in two ways to show E[X] = / P(X > x) dz.
0

Joint Law: Uniqueness %2 x & gen. by. T = {(—o0,2] x (—00,y] : z,y € R}, T w-system.
Px y uniquely specified by Fx y.

Joint Continuity X,Y jointly cont. if 3f : (R? Z(R?)) — (R>¢, %), S.T.
]P)X,Y((_Ooax] X (—oo,y]) = /IL(—oo,x]X(—oo,y]f(may) dx dy

(".)Argue that Px y (F) = /]lpf(x,y) dx dy, VF € B x B.

Marginal Density Recall, X cont. <3f non-neg.€ 0% S.T. Px(S) = / fdx.
]

Then: fx(@) = [ 1(2.9) do

Px(S) =Px,y(S xR) :IP’((X,Y) €S x R) = //]lSXR(x,y)f(x,y) dy dx = /S/Rf(m,y) dy; dx O

=fx ()

Independence and Product Measure X ~ (Px, Fx)&Y ~ (Py, Fy). TFAE:
* X 1Y
xPxy =Px x Py
* Fxy(,y) = Fx(z) - Fy (y)
* If joint PDF exists: fxyv(z,y) = fx(z)- fy(y) for A x A —a.e. (z,y)
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5.2 Day 2: Conditional Expectation

Main Reference(s): David Williams, Probability With Martingales, 1991

KEYWORDS:

Conditional Expectation Given (Q, #,P), 4 C ¥ o-algebra & X S.T. E [|X|] < occ.
M) E[Y] <
Let (¥) = ¢ (#%) Y is 4 — measurable
(#i) /Yd]P’:/Xd]P’, VG € ¥
A r.v. Y satisfying (*)Gis called anersion of the conditional expectation E [X |E¢] =Y as.
Note E[X|Z] := E[X|o(Z)] and E[X|Z1, ..., Z,] == E[X|o(Z1,...,Z,)]
Idea 1 can decide whether or not events of Y happen only based on the info I have in ¢4 C ..
Example: Coin toss: Q = {H,T,HH, HT,TH,TT} % = {H,T}* ¥ = {H,T}

Yy = “1°" coin toss is H” € ¢, while Y, = “2" coin toss is H” ¢ 4

-

Elx4:7= ELY4s)

MAIN THEOREMS:

Practical n-system Check To check that a r.v. Y verifies (x) part (éi¢), enough to check on a

m-system Z S.T. Q € Z and 0(Z) = 9.

(click)
T m-system, ¥ = o(Z). A := {GE% : / Y dP = / Xd]P’}.
G G
-QcA
—G,HGA,GQH:>H\G€A<since Yd]P’z/Yd]P’—/YdIP).
H\G H G

— A, €A A, SCA Weknow 14, /14 Y, =Y1,, . |V, <|Y]|€ L' apply DCT.

Hence, A is a d-system containing Z = A =d(A) 2d(Z) =0(Z) = 9. O
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Existence & Uniqueness Given (,.%,P),r.v. X S.T. E[|X|] <00 & ¥ C .7 (sub o-algebra):
—> There exists a r.v. Y satisfying (x) above.
If 3Y satisfying (%), then Y =Y a.s. (ie., P (}7 = Y) =1).
Note o(Y) is a Cond. Exp of X <= ¢ ismeas. & E [(p(Y)— X)g(Y)] =0Vyg measEI

Uniqueness: Assume X € L'(Q,.%,P) & Y,Y ver. of E [X|¥]. GOAL: P(Y = W) = 1.
By definition of E [X|#]: Y,Y € L' and E [(Y - ff)nc] =0VG € ¥ by () part (iii).

Ay = {wEQ:Y(w)—?(w)Z%}. Y-Yemd = A,€9.

oz/ (Y—Y)dIPz%P(An):>IF’(An):0:>IP’(U;L’°:1An):O:>IP’(Y>Y):O.

Similarly, P (17 > Y) —0=P (Y = Y) —1.

Existence: Radon-Nikodym Proof

Recall Radon-Nikodym (RN) Theorem: Py < Py = 3Y : Q — Ry S.T. Po(A) = Ep, [Y14] = [, Y dP;.
WLOG assume X > 0 (otherwise use X — X ) & X not constant: then E[X] < oo & E[X] > 0. (i) v

]E[XJIA]_/AXdP
E[X] _/QXdIP’

%H 3Z>0 ST.Py(A) =E[Z14] = / Z dP and Z is ¥-measurable.
Nikodym A
— E[X14]=E[Z14]E[X] = ]E[(Z E[X]) JlA].

———

=Y
= IfY := (Z E[X]), then E[Y14] = E[X14] VA € ¢ (iii) v and Y is ¥-measurable (ii) v/

Define Py(A) :=

(VA € ¢). Py(-) valid prob. meas. (on ¢) & Py < P.

Existence: Orthogonal Projection Proof (see Williams p. 86)

Sketch: use the completeness of L(Q,¥,P) & L*(Q,%,P) C L*(Q,.Z,P) to construct orthogonal projection
Y of X onto L?(Q2,%4,P). Y will be the conditional expectation of X.
Recall that we get (X — Y, Z) = 0 together with Z = 14 for G € ¥.

Once done with L?: truncate X,, = X An & ML get L1. O

“We apply RN to the sub-o-algebra ¢4: P> & P are measures on (2,%), where P can safely be restricted to sub-o-algebra,
then the RN derivative is automatically measurable w.r.t. the common o-algebra on which measures are defined.

Positivity 0< X € L' = E [X|%] >0 a.s. .

Z:=E[X|¥9]. Ap={w:Z(w)<-+}
— oz—%n»(An) z/

ZdIP’:/ XdP>0 — P(Ay)=0Yn. O
A, A,

2Try Monotone Class Argument
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Properties of Conditional Expectation Let X € L' & ¢, H sub o-algebras of .Z.
(a) Iterated Expectation: E {IE [X|€€H =E[X]

(b) Full Knowledge: X is ¥-meas = E [X|¢] = X as.

(c) Linearity: E [ale + a2X2|§f] =aq,E [Xﬂ%] + asE [X2|€f] a.s. , Vai,as € R
(d) Positivity: X >0 = E[X|¥4] >0 a.s.

Corollary: X <X = E[X|9] <E [XW} a.s.

(e) MCT: 0< X,, /X = E [Xn|£4] N E [X|§ﬂ a.s.

(f) Fatou: X,, >0 = E [l%lni}ioréanKf] < 1ﬂng [X,|¥] as.

YeIL: X, <YVn = E {lim suan|E¢] > limsupE [Xn|%] a.s.
n—oo n—roo

(g) DCT: X,, 5 X, |X,| <V as. Vn & E[V] < oo = E[X,|9] 25 E[X|¥9]

(h) Jensen: c: R — R convex: E [[¢(X)|] < oo = E [¢(X)|¥4] > ¢ (IE [X|€€]) a.s.

Corollary: ||E [X|4] |, <[ X]l,, Vp > 1.

(i) Tower Property: H C 4 C F — E [E [X|¥] "H] —E [E [X|#] ’{4] —E[X|H] as.
(j) Factorization: 7 ¥-meas. & bounded — E [ZX|#] = ZE [X|¥] as.

Corollary: X € LP(Q,.7,P), Z € LI(Q, F,P), p,q > 1:

pl+qg =1 = E[ZX|9] = ZE [X|¥] as.

Corollary: X € (mZ)*, Z € (m%)*: E[X],E[ZX] < 00 —> E[ZX|G] = ZE [X|¥] a.s.
(k) Independence: H L o (¢(X),¥9) = E[X|o(¥,H)] =E [X|¥4] as.

Corollary: X I H = E[X|H] =E[X] as.

(a) Iterated Expectation: E [IE [X|£¢]] =E[X]

Taking G = Q in (x,iii): E [X|%] =E[Y] = E[Y1g] = E[X1g] = E[X].
(b) Full Knowledge: X is ¥-meas = E [X|¢] = X a.s.

Notice Y = X satisfies all assumptions in (*).

(c) Linearity: E [a1X1 + a2 X5|9] = a1E [X1|9] + a2F [X2|9] as. , Vay,a €R

Linear combo of ¥-meas. fnc. is ¥-meas & linearity of integral.

(d) Positivity: X >0 = E[X|¥] >0as. Corollary: X <X = E[X|9] <E [XW] a.s.
Proved above. For corollary, use linearity and positivity.

(e) MCT: 0< X,, !X = E[X,|9] "E[X|¥] as.
Y, € m¥

Y, =E [ang] = 0 <Y, 7 (from monotonicity and linearity) = Y := ILm Y, d—=——Y e m¥%.
n o0
/Yd]P’]\gT lim [ Y, dP %L tim Xnd]P"gT/XdP(VGeg). m
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(f) Fatou: X,, >0 — E [limiannW] < liminfE [X,|¢] as.
n—r oo n—oo

n—r oo n— oo

Yel': X, <YVn = E [IimsuanKﬁ] > limsup E [Xn|€¢] a.s.

Y, := inf X; 2 liminf X, =% E [1imiann|g] = lim E [inf X,M] < lim inf E [X;|¥]
k>n n—00 n— oo k>n

n—o00 n—oo k>n

Y — X, >0 p [

liminf ¥ — Xn|s4] <liminfE [ ~ X,[¢] 258 {nrg inf —Xn|54] <lim infE [~ X, [¢].

n—oo

(g) DCT: X,, 2% X, |X,| <V as. Vn & E[V] <o = E[X,|¥9] =3 E [X|¥9]
Consequence of two Fatou lemmas with lim sups and lim infs.

(h) Jensen: c: R — R convex: E [|¢(X)|] < oo = E [¢(X)|¥9] > ¢ (IE [X|€§]) a.s.

Let S = {(a,b) €cQ®:ax+b< c(m),Vm} = s(x) = sup (axz+0D).
(a,b)eS

E[c(X)[%] =E | sup aX +b|¥| > aE [X|¥] +b —2 E[X|¥] > sup aE[X|¥] +b=s(E [X|¥]).
(a,b)eS RHS (a,b)eS
Corollary: ||E [X|¥] |, < X, VP > 1.

1/ i/ » 1/p
Take c¢(z) = |z|P, apply Jensen’s & take E[]: (IE [|X|p]) / = (E []E [|X|p|§4]}> : > (IE UE [X|g]‘ ])

(i) Tower Property: H C Y C % — E [IE [(X|9] ‘7—[] =E []E [X|H] ’{4 =E [X|H] as.
E[E[X|9]|[#| =E[X|%]  GOAL:Y =E[2/x].

= =
v Y is ‘H-measurable.

v / Yd]P’VGZGH/ XdIPvczeg/ ZdIP’:>/Yd]P’:/ Z dP (VG € H).
G G G G G

(j) Factorization: Z ¥-meas & bounded = E [ZX|¥4]| = ZE [X|¥4] a.s.

Y :=E [X|¥] GOAL: YZ =E [ZX|9].

v Y Z is 9-measurable (prod of two meas. fnc.)

v Xni=XAn & Yo:=E [X,|9] & Zi=Znk=—E (Y - Xa)Z1g
rthProj

X, Z1¢ &5 XZ1g, and | X, Z1¢| < |XZ| € 2B E([XZ16] =E[Y Z1g].

PO P i B ((V, — X)) Zil6]=0

k—o0

Monotone Class Proof:

H:={Z:(09)— (R,B): Z is bounded and conclusion holds}
VZ=1€H,aY =E[X|¥] = E[V1g] =E[X1g],¥G € ¥.
v' H clearly is a vector space.

v Z=1gp (Ec¥9) 2L YZd]P’:/ YdIP:/ XdIP:/XZdIP’.
€Y Jag GNE GNE G

VO<Zy A7, Zbdd, Z, e H 25 Z € H.

So (j) satisfied ¥ Z bdd & ¥-meas. For any Z: truncate Z, = Z An, and use DCT & E [| X Z|] < .
Corollary: X € LP(Q, #,P), Z € LY(Q, Z,P),p,g>1: p 1 +q¢1=1=E [ZX|§¢] =ZE [X|€¢] a.s.
Corollary: X € (m#)", Z € (m%)*: E[X],E[ZX] <0 = E[ZX|¥4] = ZE [X|¥] as.

For both, notice that above proof hold whenever | X Z| € L. O

\ Il
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(k) Independence: H L o (¢(X),¥9) = E [X|o(¥,H)] =E [X|¥9] as.

Let Y :=E [X|¥]. GOAL: Y =E [X|o(¥4,H)].

v Y is Y-meas. = Y is 0(¥,H) meas.

v Goal: E[X1g]=E[Y1g|V E € 0(4,H). Idea: show on m-system Z ={GNH:Ge€ ¥, H cH}
E[X1cly) == E[X16|E[ly) 2= E[Y16]E[Ly] = E[Y11x]

Corollary: X 1L H = E[X|H] =E[X] as.

Take ¥ = {@,Q}, and recall E [X|¥] = E[X]. O

Let ¢ = {@, A, A°,Q}. Compute E [X|¥], VG € ¥.
E[X14,]

Generalization: {Aj,...,A,} € ¢ a partition of Q: Y =¢114, +...+ ¢, 14, with ¢; = PA)
i

(click)

Notice Y can take at most two values. Indeed, if
Jdey, o, 3 € R, distinet s.t. Y(w;) = ¢; (1 = 1,2,3)
for some w;’s, then, Y =1 ({c;}) # @, Q. Only possibil-
ity is that Y ~1({c1}) = A. In this case, Y "1 ({c2}) =
A%, but w3 ¢ A& ¢ A°[=F]

c, HfweA,
(i) Let Y = . WLOG assume ¢; < ca.
co, ifwe A°.
o ifrz<cag
Then: Y }(—oo,2] ={w:Y(w) <z} =S A4 ifc;<z<cy =Y '(-00,2]€¥, VxR
Q E) <z

Since it’s true over m(Y) = {{w Y(w)<z}:ze ]R}, then, Y is ¥-measurable. v/
i) E [[Y]] = |ea[B(A) + eofP(4°) < Jea] + |2l < 00. v

1
(ii) / Y dP = ¢;P(A) ZE [X14] = |a = E[X14) is indeed a constant v/,
A P(A)
E[X1 e
& Y dP = cIP(A°) iR [X14e] = |co= ﬁ is indeed a constant v
Ac
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5.3 Day 3: More on Conditional Expectation

Main Reference(s): David Williams, Probability With Martingales, 1991

KEYWORDS:

Intuition Behind A € 0(2) Z: (Q,.7) = (R,#): Aco(Z)={Z"'(B) : B€ %}

MAIN THEOREMS:

Technical Point 1 X € L', ¢4 C .#, assume Y st. Y € m¥ & / Y;dP = / X dP, VG € 9.
G G
— E[I¥]] <E[X]] < oo,

Note This follows as conditional expectation reduces norms in LP spaces (p > 1).

(click)
<[ e
Y >0

< / |X] dP.
Y <0

Yd]P’+/ (-Y)dP <E[|X]] < o0. O
>0 Y <0

X dP

OS/ Y dP = X dP =
Y>0 Y>0

Y >0

&0< — Y dP = — X dP = |- X dP
Y <0 Y <0 Y<0

— ]E[|Y|]:/

Y

Technical Point 2 X > 0. Then dY S.T. /

YdP:/XdIF’,VGG%.
G G

X, =XAn,Y,=E [ang] =0<X, "X =0<Y, 7 HenceY := lim Y, (w) exists (possibly o).

n—oo

/Ydﬁ»"g‘”nm Y, dP 2L lim Xnd]P’AgT/XdIP. 0
G G
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Agreement with Traditional Usage X,Z jointly continuousﬂ h-Borel S.T. E [|h(X)]|] < oo
— 9(2) = E [h(X)|o(2)], where g(=) = / h(@) fol(2]2) do & fo). (x]2) = L22l02)

(i) 9(Z) € mo(Z). Will prove g(-) is Borel.

Claim: Wz, 2) = h(z) is B x B measurable.
(.)h~Y(B) = h"}(B) x R € B x #,VYB € #. Hence, h(z) f,.(z|z) is measurable with respect to % x 2.
= /h(m)fz|z(a;|z) dz is AB-measurable, hence (i) is proven.
(ii) Prove: / 9(Z) dP = / h(X) dP,VA € 0(Z).
Aco(2) (:A) dBe % S.é‘. A= Z7!'B. Hence, 14(w) = 15(Z(w)).
[ 92y = [ 15(Z@)o(2(w)) aP = [ 15G)a1-(2) d=
1p(Z(w))h(

(2)ap= [
[ = [ yap = [ [ 1a(:)hia) dbx.z = / [ 15 faslel)f (2) o
1p5(

Zubinl =/R 2) (/R h(x) fz)-(2]2) a:) 2)dz —/R]lB (2)dz. O

=g(2)

Independence {X;}! ; L, h:(R",%") = (R,#) S.T.E[|h(X1,...,X,)|] < oo.
Then E [h(X1, ..., X,)|X1] = o(X1), for p(z) :=E [h(z, Xa2,..., X,)].

Claim: () is B-measurable, hence p(X7) is o(X7)-measurable.

/ h(@, Xo(@), - . Xn(w)) dP(w)

hz,x2,...,2n) dPx, . x,(z2,...,Tn).

{||

Change of Measure

S1 = (R, B,Px,), S2 = (R, B L Px, . x.). h:(S1x Ss) = (R, B) Wf%ﬁj@go is B-function.
Clain: VG € o(Xy), E [p(X1)1¢] =E [A(X1, ..., Xa)1g].

G € 0(X1) <= G = X7 *(B). Hence, 1g(w) = 1(X;(w)).

E [h(X,,..., Xn)1g] = /Q 1a(@)A(X1 (@), - Xn(w)) dP = /Q 1 (X1 (@)X (@), - ., Xn(w)) dP.

_ / Lp(@)h(@s, .. .,20) dPx, . x. = / Lp(@)h(@, .. ., 2n) dPx,dPx, . x.

e [ 1p(w) ( L @) dx,, ) @x, = [ Ls@)plar) dPx,

— E[h(X1,..., Xa)Lo] = E [Lp(X1)p(X1)] = B [Low(X1)]- O

dP
3ie., 3 f(z,2) : R?2 — R>g & x B-measurable S.T. Y X’j}\ (z,2) = f(z, 2).
= X
So Vh Borel, we can compute P(h(X, Z) = ) or E[h(X, Z)] using 2 changes of measures: P — Px 7 — f(x,z)dz dz.
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Existence of Cond. Probs Want to define a conditional probability P (X € A|¥) := E [15(X)|¥].

Problem: P(:|¢) may not verify countable additivity = P(:|%) may not be a prob. meas.
n=1

* Fix {F,}°° , disjoint: IV null!] S.T. P (U F.|9 ZIP (Ful9) (w) ¥ weN©

()0 < ]lUn (X)) ]ono . (X) (used in MCT below)

oo

Z F |g Def Z]E ]1Fk |g Def hm Z]E ]]‘Fk )|E¢] Di:sj lim E l:]].Un F’“(X)‘g:|
k=1

n=1 MOT [lu o (X) ] Def (

* Let A be set of all countable collections of disjoint sets in #: A := {a = {F,},—, : F, € Z disj.}.

w) for w € N¢. O

P(-|¢) might not be count. additive for a.e. w.
(")NEED: Verify count. add. for every countable collection of disjoint sets.

We have only proved that countable additivity holds over Q \ U N
acA

Problem: may have IP’( U J\fa> # 0 (an uncountable union of null sets may not be null) O
acA

Use of Symmetry Let {X;}?, iid. Then:

(i)E[ﬁ} =5Vi=1"'n (-;)1=]E[&] =E[M] =E[£]+...+E[§—:] =n]E[§]

Sh Sn Sh Sn n
(ii)E[i—ﬂ —T:,w1thm<n () [ ] Z]E[ ]
(iif) E [XiS,] = %Sn Vi=1...n ()Sy =E [Su|S.]=E [X1 + - +Xn|Sn]=i]E [X,]S0]=nE [X1]S,]
=1

m

. _m . .. _ < ‘ _n
(iv) E [Sm|Sn] = —Sn, with m < (L)E [Sm|Sn] ;]E[XASTL] —Sn

e, P(N)=0
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Chapter 6

Week 6: Martingales
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6.1 Day 1: Martingales

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

KEYWORDS:

Filtration Given (Q, %), {%,}52,: 1 C %, C F3 C--- C Z isafiltration. Fow =0 (U, fn)
Natural Filtration Given {IW,,}°2; stochastic processﬂ natural filt. %, = oc(W1,...,W,).

Adapted Process Process X = {X,,}22, adapted to filtration {.%,,}>2, if X,, is .%,-measurable.

Note Usually, X = f(Wq,...,W,), f: (R",%#") = (R, A), and %, nat. filt. of W.

Martingale Given a filtered space (2, #,{%,},P): a proc. X is a martingale w.r.t. (%,,P) <
(i) X adapted: X,, € m%,
(ii) X, € L': E[|X,|] < o0 Vn
< X,-1 a.s.  Supermartingale (SupMG )
(iii) E [X,|#01] § = X,_1 a.s.  Martingale (MG )
> X, _1 a.s. Submartingale (SubMG )
Note A process X is a martingale <= X is both a sub/supermartingale.
Note X supermartingale <= —X submartingale.

Note X, € L': X, is a martingale < Xn = X,, — X is martingale. So WLOG, set Xy = 0.

Previsible Process Process C={C,,}5%, is previsible & C,, € m%,_;.

Stake on game n: C),, = bet you make at round n-often based on your history

L Alternate notation: Foo = \/2071 Fn.
2A stochastic process W = {W,}52 | on (Q, %) is a sequence of F-measurable r.v.s indexed by n € N.
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Gambling Strategy
*+ Bank Account: X, if bet 1% per game;

Y, if bet C% per game.
* Net Winnings For Unit Bets: round n:
Xn—X,-1 (bet 1% per round for each round).
* Total Winnings up to Time n:

Yo =Y Ce(Xx — Xpo1) = (C o X),

k=1
Note (C e X),=0&Y,—Y,,_1=Cp(X;,—X_1)
* Martingale Transform of X by C: CeX

Continuous analog: stoch. integr. [C dX

MAIN THEOREMS:

Martingale Property X a super/sub/martingale: then V. m <n
< X,, a.s. Supermartingale (SupMG )
E[X,|Zn]{ = X,, as. Martingale MG )
> X,, a.s. Submartingale (SubMG )

(B [Xal Fm] "2 E (B [Xo| Fpo1] 1P| ZEL B [Xnoa| Fn] =+ = E [Xn41| Fn] = Xim

Martingale Transform Let C be a previsible process (C,, € %, _1).
(i) C >0, C bdd’| X SupMG = Y :=C e X SupMG (null @ 0).
(ii) C bdd, X MG = Y :=C e X MG (null @ 0).
(ili) X € L? & C € L? = (i) & (i) still hold.

=0, X MG,
E [Yn - Yn—llyn—l] =E [Cn(Xn - Xn—l)ljn—l]cnein_lcn]E [Xn - Xn—llyn—l]

<0, X SupMG , C >

Integrability |Y;,| = ch(Xk — Xi_1)| < Z |Ck|| Xk — Xp—1] € L* if E [|Cr|| Xk — Xp—1]] < 00, VE.

k=1 k=1
Ck, bdd (Xk, € Ll) — E [le“Xk —Xk_1|] < 00 ;
Cauch;
Ck,,Xk € L? fwar} E [|Ck||Xk = Xk_1|] < ||Ck||2”Xk = Xk_1||2 < 00. O

33K S.T. Cp(w) < K¥n €N, YweQ
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(1) X, LE[X;]=0,S,=X1+ -+ X,, %, =0(X1,...,X) = S, martingale w.r.t. .%,.
Note Interesting Q : When does nh_)rréo Sy, exist? [Kolmogorov 3-Series Theorem]
(i) X, >0 L, E[X;] =1, M, = X1 X5 ... Xn, F = 0(X1,...,X,) => M, martingale
Note Interesting Q : M := lim,, M,, exists [Martingale Conv. Thm|, when E [M] = 1?7 [Kakutani’s Thm]
(iii) Given ¢ € L', filt. %, M, (w) =E [{|#,] () = M,, martingale w.r.t. Z,.
— This scenario is accumulating info about a r.v.

Note M, — My =E [£|#] [Levy’s Upward Thm]. When is £ = E [£|.#]? [Noisy Obs. of a r.v/]

(i) E [Snlyn—l] =K [Sn—l + Xn|yn—1] Sneﬁn_l S'n,—l +E [Xn|yn—l] Xngn_l Sn—l +E [Xn] = Sn—l-

(ii) E [Mnlyn—l] =E [Mn—IXnLg.n—l] M"—le:m‘?"—l XHJE"_I

Mn—I]E [Xn|yn—1] — Mn—l-
(iii) E [M,|Fn1] =E [IE 3EA yn_l] T B [¢)Fn1] = M.




6.2 Day 2: Doob’s Optional Stopping Theorem

Main Reference(s): David Williams, Probability With Martingales, 1991

KEYWORDS:

Stopping Time T : Q — NU {oo} is a stopping time if {w : T(w) < n} € F,, Vn < cc.
Note Equiv. to check {T =n} € .%,, Vn < co.
(NHw:Tw)=n}={w:T(w) <n}\{w:Tw) <n-1}eF, & {w: T(w) < n}:LnJ {w:T(w) =k}es,
Idea We stop game right after n'® round based on our info at the end of n'* rou];:i?
Example: {X,},2 | adapted process, B € 4.
T:=inf{n >0: X, € B} = T = stopping time.
Note T = first time X, hits set B. T =00 <= X, never hits B.

(HT <n} = LnJ {w: Xi(w) € B} € Z,, since {w: Xi(w) € B} F C Fn.
k=0

T=00= X, #B,Vn = {T=o00}=()]X;"(B) € Zwe.
k=1

Stopped Process X7 := {XT/\n}ZO:(]y where T' a stopping time, X a process.

MAIN THEOREMS:

Stopped MG ’s are MG ’s T stop. time, then Vn:
Super MG , and E [X7p,] < E[Xo] if X Super MG
= stopped process Xrpnp, = MG , and E [X7,,] = E [X0] if X MG
Sub MG , and E [X7an] > E [X0] if X Sub MG

Claim: Cp(w) = Lpy)>n => Cy is previsible.
()Chn : Q — {0,1}: need C;1({1}) € F#,_1 and C;*({0}) = C; 1 ({1}°) € Z#,,_1.
Indeed, {C, =1} ={T'>n}={T <n-1}° € Z,_1.

[Martingale Transtorm|

Claim: Xppan = (C e X)), + Xo X7nn is super/sub/MG

[Theoreml o
(N CoX)n(w) = Cu(Xp—Xp1) = > U{T >n} (Xe—Xp-1) = Y (Xe— Xi—1) = Xrpn— X0 O
k=1 k=1 k=1

41X 1 (Q,7) = (R, B), F) meas. (adapted proc.) = Xk_l(B) € Fy,, VB € #,Vk € N.
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Careful! E[Xran] =E[Xo] Vn == E[Xr] =E[Xo] in general
(.)Random Walk over Z: T =inf {n >0: X,, =1}

— E[Xran] =0=E[Xo] Vn but E[X7] =1 £ 0 = E [X,].
Note P (T < c0) =1 but E[T] = co (later)

Idea Know E [Xpan] < E[Xo]. Want to understand when E [X7] < E[X]. Under some

. oy a.s.
‘nice’ conditions, Xra, —> X7 and E[-]’s converge, too.

Doob’s Optional Stopping Thm (OPT) T = stop. time, X = SupMG /MG . If either holds:
(i) T bounded: 3B > 0s.t. T(w) < B as. .
(i) T <ocas. &3IY € L' S.T. |X,(w)| <Y V(n,w)
(iii) E[T] < 00 & 3B >0 S.T. | X, 41(w) — Xp(w)| < B V(n,w)
(iv) X > 0 SupMG & T < oo a.s.

= Xy integrable & E [X1] < E[X;] or E [X7] = E [X]

We know: E [|X7an|] < 0o & E[X7an] < E[Xg] (%) always holds for any X SupMG & T stop. time.
(i) Take n > B = E[X7] = IE[X TA”] < E[Xq].
—~
=T
(i) T < 0o as. = Xpan 2 2TO, v (@) as. , (X, <V 225 E[X1] < E[X).
TAn TAn ——
(iii) Xppp — XO:Z X — Xpo1 = | Xpan — X0|§Z | X} — Xx_1|<B(T An)<BT == E[X7]<E[X(]
k=1 k=1
(iv) Yy, 7 22° Xp, > 0, ¥V 25 X7 22U B3] = E[lim Yn] < liminf E [X7,] <®) E [Xo). O
n—oo n—oo

Stopping Time Calculus 77,75 stop. times = 17 ATb, T1 V T, T1 + 15 are stop. times.
(N AT <n} = {%’:1 <n}U{Thi <n}e.F,
( N+ Te=n}=J{ =k}n{Ta=n—k} € Z,.
Corollary: T stop. ,fci:r%e = Ty =T A M stop time, for any M € N.

Note If T < 0o a.s. , Ty == T & Ty bdd.

Stopped o-algebra 7= stopping time: %, := {A € Foo : AN{w:T(w) <n} € fn,Vn}
Note F,=c-field & X, € m.%,
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Truncated Martingale Prop X, SupMG , k € R = Y, := X,, A k is SupMG .

E [Yo|Fa-1] =E [X A bl Fo1] <min {E [Xo| Fpo1] B [kl Fnr] f=min { E[Xo|Fooa] b} <Yoor O
—_———

Sanl

Alt.Proof of Doob OPT (iv) indexMartingales!Doob!Optional Stopping Thm X >0 SupMG &
T<co as. = Xrel! & E[X7]<E [X,]

(click)

Truncated
—

X, SupMG , k e R Y, := X, Ak is SupMG .

Lemma

Now, Ty =T AN M stop. time = Y, = X, an SUpMG —= Z,, = Y, Ak = X1, an A k SupMG .

E[Z,] <E[Z] =E[Xo Ak] = E[Xryan Ak] <E[Xo Ak 2225 E [X7,, A K] <E[Xo).

Xry, Ak 25 X Ak (as M — 00) & | Xpy, Ak| < k 225 E[Xr A k] <E[Xo Ak

0< Xp Ak A Xr (as k — 00) 228 E[X7] < E [Xo]. O

Two Stopping Times T, S two stop. times S.T. S <T = E[Xpan] < E[Xsan]-
Corollary: T & S bounded, S <T as. = E[Xy] <E[Xg].

(click)

Clain: Cp = 1gq(n,w) =1{S(w) <n < T(w)} == 1{T >n}—1{S > n} is previsible.

()Ch Q= {0,1} = check C ({1 ={S<n}n{n<T}={S<n—-1}n{T<n-1}€ %, .
Clainm: Xrpn — Xsan is a SupMG =5 E [Xran — Xsan] < 0.

() X1An — Xsan = (C @ X),, is SupMG as C,, previsible.

Note Corollary follows from Doob’s OPT (4). O

OPT Corollary M a MG : C previsible, T" a stopping time, S.T.
E[T] < oo, C bounded, and |M,, — M,_,| bounded = E [(C e M)7| =0

(click)
Lot Y;, = (Co M), = > Cu(Xj, — Xko1). WANT: E[Y7] =0.  E[Ypaa] = E[Yo] = 0
k=1

TAn TAn
Yrpm =Y Ci(Xy — Xp—1) = [Yrpn| < ) |Ch| - |(Xk — Xx-1)| < B+ T (3B > 0 bound)

k=1 I A P

bdd bdd

Dooh
== EYr] =E[Y] =0. -




Finite E[T]: T =stop. time: 3N,e >0 S.T.P(T < n+ N|.%,) >cas. Vn = E[T] <
Idea Use it to prove E[T] < oo for Doob’s OPT.

(click)

P(T >kN)=P(T>kNNT > (k—1)N) =P (T > kN|T > (k—1)N)P (T > (k- 1)N)

2

=]P(T>MG|,9 k—1 N)
P(T>kN)<(1-e)P(T > (k—1)N) < <(1— P (T > N) = (1 — 21 P (T > N|Fo = {2,9)).

induction < (Ir_ €)
P(Z>k)<(-or EEg|L —ip Lo <i(1_5)k<oo%nzm<oo m
N _ c T>0 N _k:—O N _k—O constant
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+1, w.p.1/2, e
(X )02 iid~ X = 2t/ Sn =Y Xi (with So =0), Fn = 0(X1,..., Xn) = 0(S0, 81, - -, Sn).
-1, w.p.l/2. k=1
=inf{n>0:5,=1} = P(T =o0) =0 while E[T] = occ.

1 2 1
0 _ 05, — —
Let M} = (sech 0)"e”"", where sech § = cosh® P te?  E[0%n]

M¢ is a MG .
noo _ 0X;
(M = HXi’ where X; = W unit mean, indep & use [Product Martingale Exercise
e
i=1

E [Mf,,] =1

()Mgpn is MG = E[M2,.] =E[M,] =1
E [M%] =1 =E [(sech 6)Te?].

()0 >0 = e05Trn < of RESL ME, <éf

E [(sech 6)T] = e~? (for 6 > 0)
()1 =E [(sech 6)Te’] = €’E [(sech 6)7]

P(T < x) =1.
() (sech 6)T —)1{T<oo}and£1— E[1{T <oo}] =P(T <o0) =1
]E[T]:oo.

(N1 =E[S7] =E []E [ST|0(T)]] = E[TE[Xi]] = E[X,]E[T]. E[T] < o0 = contradiction!

()[Wald’s Identity] E [Z;f”  Kilo(T )] = TE[xi]
Z n [(Sech 0)T]=e™ _p Claim! 1 —V1—a2
a"P (T = =

(07

a—sech0:>]E

Corollary: P(T =2m —1) = (-1)™*! (i{f)

1
(-.)Recursion: from Xy = 0 go to X; = +1 w.p. 3

— f(a):=E[aT] = %IE [a71%, = 1] +%E [071x, = 1] = %(H %E (71, = 1]
—_————
so T=1

Now let Ty =inf {n>0: S, =0/Xo=—-1} & T =inf {n > 0: S, =1|X, =0}:
Then E [aT|X; = —1] = E [o T 72| X, = —1] = aE [ 711X, = —1) E [a™2|X; = 0]

— f(a)=%a+%af(a)2 = f(a) = LesVi=ar b t the “+” cannot hold:
V1= 7
('3)14-\/1—04221&%21 — #Zl,butf(a)— —0 0>O 229 r4) <




6.3 Day 3: Martingale Convergence Theorem

Main Reference(s): David Williams, Probability With Martingales, 1991

KEYWORDS:

{X,} Bounded in L' supE [|X,|] <co <= IB>0S.T.E[|X,|] <B

n>1
Number of Upcrossing Uy|a,b](w) =k if 3s1,...,8, & t1,...,tx S.T.:

0<s1 <ty < - <sp<tpr <N&X;, <a, Xy, >b,Vie{l,... , k}.

MAIN THEOREMS:

SupMG Boundedness {X,} SupMG is bounded in L' <= X, is bounded in L.
Note For SubMG : <= X, is bounded in L.
Corollary: {X,,} SupMG : X,, >0 = bdd in L' (IE[|X,]] =E[X,] < E[Xo).

E(X.]+E[X;] =E[X{] = E[IX.)] =E[X] + E[X;] = 2E[X;] + B[X,] < 2E [X;] + E[X)]

since SupMG & E [|X,,|]] > E [X;]. O

cCi=1 {X() < a}
Useful Ineq. Let X SupMG & C previsible:

C,=1 {Xn—l < (Z} 1 {Cn—l = 0} +1 {Xo < b} 1 {Cn—l = 1}
= Y, = (CeX), SupMG & Yy(w) > (b—a)Un[a,b](w) — (Xn —a)”.

Note C corresponds to betting once hit below a, until hit b

s1=inf{n >1:X, <a} si=inf{n >t;_1: X, <a}
Let Un|a, b](w) = k. Define &

t1 =inf{n > s; : X, > b} t; =inf{n > s; : X, > b}
= 1<s1i<t1 < <sp <ty <NVie{l,... k}&Cj=1Vs;+1<j<t,.

Also, let sp11 =inf{n >t : X, <a} AN

N k ti N
YN = th(Xt - Xt—l) = Z Z (Xj - Xj—l) + Z (Xj - Xj—l)
t=1 i=1 j=s;+1 j=8pt1+1
=X, —Xo, >(b—a)
N
= Yw>0b-ak+ Y (X;-X;1)=0-a)k+Xy— X, >0b-a)k—(Xy—a)". O
Jj=sk+1+1
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C=1fore& C =0 foro. /OOM

VAR \‘()

& bobawod sldivv

Doob’s Upcrossing Lemma X,, SupMG = (b— a)E [Uyla,b]] <E [(Xy —a)7].
Corollary: X,, SupMG bdd in L', U [a, b](w) = {number of upcrossings in {Xn(w)}zozl}:

— (b—a)E [Usa,b]] <E[(Xy —a)7] <|a|+ sup E [1Xnl]
= P(w:Ux|a,b](w) =00) =0 -

Take expectation in Y;, (defined above) and use E[Y;,] < E [Y5] = 0.

For corollary, observe: 0 < Uy|[a, b](w) /* Usla, b](w) & use MCT. O

Doob’s Forward Conv. Thm X,, SupMG bounded in L* (supE [X, ]| < c0)

— X, := lim X, exists, X,, 25 X & P (X, < 00) = 1.

n—o0

Note X,, e m%, C Foo =— X, €EMFs =— Xoo € MPss.

Corollary: X, > 0 SupMG = lim, . X, = X exists a.s.

Let A := {w € Q: lim X, (w) doesn’t exist in ]I_R} = {w € Q: liminf X, (w) < limsup Xn(w)}

n—00 n—00 n—00

= U {limiann(w) <a<b< limsuan(w)}.

n— oo
(a,b)€Q? 1o

~
=Aqp

liminf < a = X,, < a i.o.
= A, C {w € Q: Uxla,bl(w) = oo}
limsup > b= X, > bi.o.

Uperossing p, (Aap) =0 = P(4) =P ({w €Q: lim X, (w) doesn’t exist in ]R}) =0

Corollary n— oo

= X, = lim X, (w) exists.
n— o0

E[|Xwl] =E [ lim |Xn|] =E [liminf|Xn|] < liminfE [|X,]] < supE [|X,]] < oo. O
n—oo n—oo N~~~ Nn—00 n
FATOU
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Carefull X, 5 Xo = Xn 55 Xoo

Sp =Simple Symmetric Random Walk: Sp =1, S, = Sp,—1 + X,, (X, iid).

Show T :=inf{n >1:S5, =0} = Sran 2% S but not in L.

(click)
Y, = Stan > 0 ?Df"’:bz Y, 2% Yoo & E[Y,] = E [Stan] 2 E [Sp] = 1.
orwar

Fix w € Q. Y, (w) conv. & integer = IN € N: Y,,(w) fixed for n > N.
If fixed #0 = Y,41 =Y, = 1 not fixed!

X, >0id, E[X,]=1,P(X,=1)<1& M, =X X,.

1
— Mnﬂo&glogMn2>0<0.

(click)

M,, product MG , M, > 0 I‘% M, 2% M.,. WANT: M., =0, as.

Mn(w) a.s.
a2 g
Mn_l(w)

P (w : lim X, exists) €{0,1} &P <w P lim X, exists) >P(F)>0

Suppose IF C Q S.T.P(F)>0& My #00on F = VYw € F: X, (w) =

Kolmogorov

0-1 Law

— Plw: lim X, exists | =1. Also, lim X,, € mr (tail) = constant a.s. = lim X, = 1.
n— o0

n—oo n—oo

P(|Xn—1|§%) E2% P (1X,, — 1] = 0) = 0, hence Jk: P(|Xn—1|§%) <1

1
Let 6 = o and P (| X, — 1| <) < 1 can’t conv to 1, contradiction!

1 1 & SLLN

| —— 2z, =0.

- og M, nE log X}, " EfllogX] < logE[X]=0
k=1 Jensen
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Chapter 7

Week 7: L? Martingales &

Uniform Integrability
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7.1 Day 1: Martingales Bounded in L2

Main Reference(s): David Williams, Probability With Martingales, 1991 [13]

KEYWORDS:

Bounded in L? X,, Sup/Sub/MG bdd in L? <= supE[|X,|?] < oo

Note bdd in 12 =10z 4 qq 5, 1,

Oscillation w: Sequence a,: w,, = limsupa, — liminf a,,.
n n

=0 yEB(zo,¢) yEB(xo,¢) >0 yEB(zo,¢) yEB(xo,¢)

Function f (at pt o): wy(xo) = lim < sup f(y)— inf f(y)) = inf ( sup f(y)— inf f(y))
—
Note w < oo: finite oscillation ; w < oo: infinite oscillation (0o — oo case undefined)
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MAIN THEOREMS:

Orth. of Increments M, € L2 MG ,a<b<c<deN = (My— M., M, — M,) = 0.
n

n
Corollary: M, = Mo+ (My — My_,) 22258 g [02] = E [MZ]+Y E [(M,c — Mk_l)Q]

k=1 orth. terms

E [Md = Mclyb] =E [Md|yb] —E [Mclyb] =M, — M, =0 & My — M, € L2(Q,yb,P)
BTl \py — M, — B [My— M%) L (My — M,) = (My— M, My — M,) = 0.

o0
L? Boundedness M, € L* MG : M bddin L? < Y E [(Mk - Mk_l)ﬂ < .
k=1

L? Convergence M, € L?> MG : M bdd in L? = M,, - M., both a.s. & in L2.

M, bdd L = MnbddLl%MnﬂMm&]P(Mm<oo)=1.

_ 27 _ 2 m— o0 )
E[(Mn-M)%= > E [(Mk Mj_y) ] Z2%, 0 (L* MG boundedness)

k=m+1
Way 1: 22U B [(M,, - M) < S E [(M,c - Mk_1)2] MIR ) = M, — M as. & in L2
k=m+1

L? MG o . . 1o L%is = i? v
Way 2: ———= {M,},_, is Cauchy in L =——= 3IM S.T. M,, —— M
— boundedness complete n— 00
Now: IP’(|]\7I—MOO| >5> §P<|]\7I—Mn| > %) —i—IP’(IMn—Moo| > %) =0 O

) ]E[|MnTZ\7I|2] : =0 :

< —0

- (/2
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Sum of 0-Mean Indep r.v.s in L? X; L ST.E[X;] =0 & E [X?]| = o7

Zak<oo = ZXk <00 a.s.

(11)EIK>0 S.T. |X( )| < K, Vn, Yw:

ZXk < o0 a.s. = ZU’C < 0.
k

Note By Kolmogorov 0-1 Law, P | w : ZXk(w) converges | € {0,1}.
k

M, :=X; +...X, & M, MG and € L. %, = o(X,..., n)|§|& Fo = {2,0}.
i _ 2 _ 2| _ a.s.
) ;E[(Mn Mn_l)] ;E[Xn] o2 <oom>5 — S &S <o as.
n
(ii) G, = M2 =) o7
k=1
G, is MG .
(E [GulFuct] =E | Mooy + X)? = Y02 ‘ 1| =E [ M2, +2M, 1 X, + X2 — Zai‘ﬁn_l
k=1 k=1
n
= M2_; +2My 1 E [Xo|Foa] +E [ X2 0| - Z M2, Zak—Gn "
———— —1
=E[X,]=0 —E[X2]=02 k

Je>0 ST. T, :=inf{n>1:[M,| >c} &P(T. =) > 0.
(".")Suppose, Ve > 0, P (T, = ) =0 = Ve, Yw, In(c,w) > 1 : |M,(w)| > ¢ = limsup |M,,| = co.
However, M, (w) conv = |M,(w)| is bdd = limsup |M, (w)| < co. '
| M1 An| < K + ¢ for every n. ’
T.>n = |Mpan| =My <c

T.<n = |Mran|=|Mr,| < |Mr, — Mg, 1|+ |Mp,—1| < K +c

o0
> of < o0
k=1
Te.An M Te.An
()Gran i MG = 0=E[Gr.an] =E [MZ,\,| ~E| Y of| 22 ol | < (K +¢)?
€ P <K+c |
TeAn TeAn TeAn
Hence, (K 4 ¢)2 > E of| =E | Y of|Te=00| P(T.=00) +E | Y 0}|Te < 00| P(T. < o0)
k=1 k=1 k=1
T.An oo
= (K+c¢)?>E 02| T, = oo | P(T. = 00) = ZJ,% ]P’(TC:oo):Zaz<oo O
k=1 k=1 k

“Natural filtration of the process.
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Random Signs ¢, ~ £1, w.p. 1/2 & {a,},—, € R non-random.
(i) Zanen <00 as. <= Zai <00
(ii) Z 02 =00 = Zangn oscillates infinitely.

n n
Careful! We don’t know (TLTCED if we can allow the random sum can converge to co.

(i) 02 = Var (a,e,) = a2 Var (¢) = a2 = 02 < 00 LI N e,
Result

& Zansn <00 = |apen| = |an| — 0 = a, bdd. Prev. result.

(ii) GOAL: Prove that lim supz arep — hm mfz aREr = 00, a.s. .

Kolmogorov’s 0-1 Law = P hmsupZaksk <oo| €{0,1} &P hmlanakek > —oo | €{0,1}

nTeo k=1

Only case to eliminates?| P [ lim supZaksk <o|=1&P hm 1nf2ak5k > -0 | =1.

n—oo
Under assumptions above, a]; ll)ounded

(.)Let M, Zakak Fixw S.T. hmsupM (w)=L<oo& linn_1>ioréan(w) =N > —oo.

Take € > 0: EINST n>N — M, <L+5&M >N-—¢

= L+e>M,>N—-e,¥n>N = |M, — Myi1| = |ant1| < L — N +2¢,Vn > N. Hence, a,, bdd.
nh_)ngo M, (w) exists, a.s.

(".")Take an w, limsup M,,(w) < co = 3B >0 S.T. M, (w) < B,Vn.

Define stop. tim:;_)TOO:: inf{n >1: M, > B}:

Mygpn < My — Mp_y + Mr_y < |ar| + B < sup |an| + B. “f%‘; Mran 255 Moo with P (Ma < 00) = 1.

For w above, T(w) = co = M, (w) =2 Moo(_w) =<1, a2 = oo = can’t converge).

Note Above, we ‘proved’ that if M, MG S.T. |M,, — M,_1| < K

Then limsup M,, < oo a.s. or liminf M, > —oco a.s. = M, == M. O

n—o00 n=e

%The oo — oo case is not allowed by the definition.

1Too Lazy To Check
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Symmetrization Technique: Expanding the Sample Space

(Q, 7, P*) = (Q,.Z,P) x (Q, Z,P), where (Q, .Z,P) is an exact copy of (Q2,.%,P).

~ * X:L(w*) = Xn((.U) k(0K . ([, ok k(¥
Let (w,w) € Q R R & ZF (w*) = X (w*) — Xk (w*)
n(@?) = Xn(@)
E[Z:] =0

= Then: {Z}} 2 are indep, with
Var (Z}) = 2Var (X,,)

Claim: X* I X* .
(IPxs 5. (0,7): BxB—[0,1] P-meas. (check on m-syst {By x Bz : By, By € B} gen. Bx %)
Py. x. (B1, Bs) = P* (w* L X% (w*) € By, X2 (w*) € Bz) =P ((w,&)) : Xn(w) € By, X (@) € BQ>.
A={w:X,(w)€EB 1} €F & B:= {w:X’m(w)eBg}ej.
P* (4 x B) = P(A)B(B) = B (X, € B1) B(Xn € By) = P, (B1)P%. (Ba):
Claim: E[Z}] =0 & Var (Z}) = 2Var (X,,)

E [Z3(w")] = E [X;(")] - E [Xi(w)] 2o

Var (Z;(w")) == Var (X;i(w")) + Var (X5 (")) = 2Var (X,,)

Conv implies E[-] & Var(-) Conv X,, L & 3K >0 S.T. |X,(w)| < K,Vn,w.
ZX" converges a.s. = ZIE [X] converges & ZVar (X)) < 0.

n n 7
Note This is a partial converse to [Kolmogorov’s 2-Series Theorem}

Take Z defined in symmet. technique above. E[Z*] = 0 & Var (Z;) = 2Var (X,,) & |Z;| < 2K (Vn,Vw).
G:= {w €eN: ZXn(w) conv} ICE— {d} €Q: ZXn(&)) conv} — P(G) = P(G)=1 = P*(GxG)=1

On G x G, ZZ* ) ZX X (@) conv = P*(w ZZ* conv) = 1.

ZVar Zaz<oo

—E[Xn])<oo = Z]E[Xn]<oo O

JLrvs b

>
n

89



Kolmogorov’s 3-Series (1) {X, 1L}, A>0&Y; = X;1x,]<a: Then Z X, converges a.s. <

n=1

(i) Y P (|Xnl > A) < o0

n=1

(i) > E[Yn] < oo

(iii) iVar (Y,) < oo.
n=1

Note (Technical) Above holds if there is an A. In this case, it holds for any A El

(<) Done: [Kolmogorov’s 3-Series Theorem|

(=) Y Xuw) <00 as. = X, 250 = VK P(|X,|>K io.) :0%2P(|Xn|>K) < o0
n n=

n
Cesaro’s Lemma a,, /o & z, & oo — — E (ag — ap—1)Tk — Too-

an
k=1
Note Taking a,, = n, get standard Cesaro mean.

(-.-)See Williams p.117.

oo n
1
Kronecker’s Lemma a, /oo & Z z—n <o = — E i — 0.
n=1 " " k=1
(".")See Durrett [5] p.81; Williams p.117. Use Cesaro.

2 Aut Caesar, aut nullus
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7.2 Day 2: Doob Decomposition, Angle Brackets Process

Main Reference(s): David Williams, Probability With Martingales, 1991

KEYWORDS:

Angle-Bracket Process M € L? MG & My = 0. M2 SubMG & M2 = N,,+A,, (Doob decomp.).

= A= (M). Will study A for convergence of M,,.
Note =222, 4 = (M) is /* and has limit A

Decomp

MAIN THEOREMS:

Doob Decomposition Given filtration {%,} & adapted process {X,,} € L':
M, MG , M, = ZXk — E [Xg| Fr_i]
k=1

3 decomp. X,, = Xo+ M, + A, with A, previsible, A,, = ZE (X5 | Freo1] — X
k=1

My=A4,=0
IfX,=Xo+M,+A, = M,=M, & A,=A, as.,Vn.

Corollary: X, is a SubMG <— A, "
Note A, accumulates expected increase & M, accumulates surprises.

Note Doob-Meyer Decomposition generalizes this for continuous time.

WLOG Xy = 0 (otherwise, take X, =X, — Xo)
E [Xn|cgn—1:| =E [Mn + Anlyn—l] =My 1+Apn=Xn 1—An 1+An = An—Ap 1 =E [ang.n—l] —Xn_1-

= Ap =) E[Xi|Fro1] - Xpoy = Mp =) X —E[Xi|Fia].
k=1 k=1
Corollary: X,, SbMG <= E [X,|Z,_1] — X,-1 >0 < A, O
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Function of an MG X, process, ¢(-) function S.T. E [|¢(X,)|] < oo, Vn
X, MG , ¢(:) convex = ¢(X,) = SubMG
= X, MG , ¢(:) concave = ¢(X,) = SupMG
X, SubMG , ¢(-) cvx + increasing = ¢(X,,) = SubMG

E [Xn|yn—1:| =X,1=— E [SO(Xn)L?n—l:I \Z/ QD(E [Xn|tg.n—1]) > @(Xn—l)
Jensen

o(9(Xn)) C 0(Xn) C Fn = o(Xn) € mF & E [o(Xn)]] < 00

= ¢(X,,) SubMG . Other cases are analogous. O

Angle-Brackets Process A = (M): A, /' A, exists (co allowed).
Mbdd in L? < E[Ay] < oo.
Ay = An oy =E[M2 = M2_||Zp 1] =E [(My, — M, _1)?|Z01].

Note A is useful in studying the martingale. For examples, see Williams .

M2 SubMG = 0 < A, S Z2o0ONE 4 exists.

E[M2] =E[4,] +E [N, =E[A,] = supE [M,ﬂ = supE [4,] = E[As].
Last item: plug & check. O

Interpretation of A-B Process A-B process called quadratic variation: A,—A,_1 = Var (Xn|<§“n_1),
hence A,, accumulates sum of variation in process.

() A, = iIE [Xf;@n_l] ~ X2 and X, 1 =E [X,|Z, 1]

n=1

— Ap—A1=E [X2|F, 1] (E [Xn|<9“n_1])2:E [(Xn -E [XnL%L_l])Q |<9Zn_1} —Var (X, F_1)
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Convergence of M < finiteness of Ao, A:= (M)
(i) For a.a w: “As(w) < o0 = liTan M, (w) exists and is ﬁnite”ﬂ
(ii) 3K > 0 S.T. | My, (w) — M,—1(w)| < K, ¥n, o]}
= For a.a w: “1111111 M, (w) = Ax(w) < oo exists”™
Note This is an extension of [Sum of 0-Mean L* lr.v.sl

Can’t use|Doob’s Conv. Thm.} Look at pointwise stuff, not L?/L! bounded stuff. A, < co == E[A] < .

(i) Ty =inf{n >1: Apy1 >k} = {w€Q: A < o0} = | {Tk = o0}
k=1
(NHAw <00} = |J {4 <k} =] ({An <k} = |J {Th = o0}, as Ae <k = A, <k,Vn.
k=1 k=1n=1 k=1
={Tr=o00}

Ty, is a stopping time.

NIk =n} = (n] {4 <k} | N {Ap1 >k} = {Th =n} € F.
=g, €EFn

A, A is previsible.

(IFix Be B: {weQ:Apan € B} ={w: Ty <n—1,Apn, € B} N {w: T > n, Ap, nn € B}
EF; EFi1

n_lf—"\ﬁ —— c
So: {we€Q: Apan € B} = U{Tkzz}ﬂ{AieB} N | {Tx <n-1}n{4, € B}
P} ~ —_—— —  —
€EFn—1 €EFn—1 EFn—1
Doob dec;,

2
MTk/\n - NTk/\n + ATk/\n

(‘-‘)NTk/\n is MG & AT;C/\n SN

ATk An — <MTk AN > °

M2

My pn(w) bdd in L? = lim My, ()an exists and is finite.
n—oo

()E [M3, 0] = E [Nrn] +E [Anyan] < &

=0 <k
A <00 = lim My, Ap exists and is finite.
n—oo
(.)0n {w : Ty(w) = oo}, lim Mz, (wyan(w) = ILm M, (w) exists, except a set N of meas. 0.
n— o0 n oo
(ii)
TBD O

Easy SLLN for MG M € L2 MG , My =0 & A= (M).

(i) T+ A bdd + previs.

s 1 —~ My, — My, . .
= = —_— < e
(ii) W, (1 A M)n ,;:1 1A, MG with (W) <1& 117rln Wy3 as

M’I’L a.s.
(iii) -~ 0on the set {w € 2 : A (w) = oo}.

3More precisely, B = {w EN: A (w) < oo} Then, 3N S.T. P(N) =0 & lim M, (w) exists, Vw € B\ N.
n

44.e., M has uniformly bounded increments.
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Levy’s Extension of BC Lemma Suppose E,, € #,Vn. Let ¢ & =P ( Ey| yk_l) . Then

k=1
(i) Yoo <00 = Zo < 0.
Z a.s.
(if) Yoo =00 = T* =51
Note Z,, is number of occurrences of Ey, (k < n).
n
Note E[g) =P (By) = E[Ya] =Y P(&) / E[Va]
Pt ~~
MCT
S P(Er) <00 = ElYa] <00 = Yo <003 Z, <00 — BCL
k=1
n o0
Note E, L, Z, =o(lg,,...,1g,): & =P (B[ Fro1) =P (Er) = Yoo = > P(Ep).
k=1

i Z
Q%a—u — Z. =00 — BQ2
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7.3 Day 3: Uniform Integrability

Main Reference(s): David Williams, Probability With Martingales, 1991

KEYWORDS:

Keyword 1

MAIN THEOREMS:

Theorem 1
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Chapter 8

Week 8:
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8.1 Day 1:

Main Reference(s): David Williams, Probability With Martingales, 1991

KEYWORDS:

Keyword 1

MAIN THEOREMS:

Theorem 1
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8.2 Day 2:

Main Reference(s): David Williams, Probability With Martingales, 1991

KEYWORDS:

Keyword 1

MAIN THEOREMS:

Theorem 1
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8.3 Day 3:

Main Reference(s): David Williams, Probability With Martingales, 1991

KEYWORDS:

Keyword 1

MAIN THEOREMS:

Theorem 1
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Index

L? Space Levy Extension of BC, [03
Completeness, [39] Quadratic Variation, 02]
Inequalities

Baire Category Theorem,

Cauchy-Schwarz Ineq., |38
Y b Banach-Tarski Paradox, [I0]

Holder’s Ineq., [38
d Borel-Cantelli Lemmas

BC 1,[12 [19)

BC 2,
Exercises,

Minkovski’s Ineq.,
Inner Product,

Monotonicity of Norms,

Norm, Levy Extension,
Orthogonality,
Orthogonal Projection, [40] Cesaro Mean,
Parallelogram Law, Lemma,
Pythagora’s Thm, Random,

Chebyshev’s Inequality,

&5 8.6, a.a. Chernoff Bound,

Almost Sure,
Algebra, [9]

o-Algebra, [9]

Rate Function,
Convexity of Rate Function,

Tight Lower Bound,

Filtrati J|
iltration, Tighter Upper Bound,

o-Algebra Generated by Coll. of Sets, [J] Chernoff’s Inequalit
Ys

Borel o-Algeb
orel o-Algebra, ] Conditional Expectation

Lebesgue o-Algebra, [0 Definition, [64]

Product o-Algebra, |59
roduct o-Algebra, FY Existence & Uniqueness, [65]

Product o-Algebra Ch, terization, [69
roduct o-Algebra Characterization, |59 Existence of Conditional Probability, [71]

Stopped o-Algebra, [77] Independence, [T

Tail o-Algebra, Intuition, 0]

Angle-Bracket Process, Positivity, [53

f M
Convergence of M, P Practical 7-system Check, [64]
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Properties, [66]

Symmetry, [7]]
Correlation, [39]
Countable Additivity, 0]
Covariance, [39]

Variance of a Sum, [39]

Cumulative Distribution Function (CDF), |13}

Empirical CDF,
Glivenko-Cantelli Theorem, [45

Joint CDF,

Skorokhod Representation,

Dominated Convergence Thm (DCT),

Bounded (BCT),
Fail, [33]

Estimate for Max. of Avg,

Event

Tail Event,

Expected Value, see Conditional Expectation

L? Norm,

Area under Graph,

CDF Integral, [37]

Continuous r.v., [40]

Definition, [37]

Function of a r.v.,

Independence, [A]]

Inequalities
Cauchy-Schwarz Ineq., [3§]
Chebyshev’s Ineq, [3§]
Chernoff’s Ineq., [37]
Holder’s Ineq., [3§]
Jensen’s Ineq., [3§
Markov’s Ineq., [37]

Minkovski’s Ineq., [3§|

Inner Product, [39]

Moments, [37]

Monotonicity of Norms, [3§|

Notation, [37]

Orthogonality, [39]
Orthogonal Projection,
Parallelogram Law, [39]
Pythagora’s Thm, [39]

Sum of r.v.s,

Extended Real Line,

Extension Theorem

Caratheodory,
Uniqueness,

Fatou’s Lemma, [32]

Fail, [32]

Fubini’s Theorem

b Switch, 6]
Breaking
o-Finiteness, [62]
Continuous Non-neg. & Integr., [62]
Discrete Non-neg. & Integr.,
Measurability Checks,
Theorem,

Function

Convex Function,
Coordinate Maps,
Positive & Negative Part,
Simple Function,
Approximation,
Integral,
Max & Min,



Properties, [30] Simple Function Approx., [3]]

Summary Table, 35
Holder’s Inequality, [3§]

Zero Measure, [31]

Independence
m-System,
o-Algebra,

Markov’s Inequality,
Martingales
12
Boundedness in L?,
Convergence in L?,

Events,
Expected Value,

Random Variables, [19]
Orthogonality of Increments, [86]

Jensen's Inequality, Sum of 0 Mean Indep rvs in L2,
Kolmogorov Adapted Process, [73]
0-1 Law, Angle-Bracket Process, see also Angle-Bracket
Maximal Ineq., [42} 4] Process
SLLN, Doob

Three Series, [i9] MG Forward Convergence Theorem, [82]

Truncation Lemma,
Two Series, [i9] Doob-Meyer Decomposition, [91]

Doob Decomposition, [91]

Kronecker’s Lemma, [44] [49] Optional Stopping Thm, [7} [7§
Upcrossing Lemma, [81] [82]

Large Deviation, see Chernoff Bound Filtration, [3

Law of Iterated Logarithm Natural Filtration, [T3

Kolmogorov, Function of a Martingale,

Strassen, Gambling Strategy, [74]

Lebesgue Integral Levy

p-a.e. Bquality, Extension of BC,

Area under Graph, Martingale Property, [74]

Integrable Function, 50 Martingale Transform, [74]

Linearity, 30 B2 Previsible Process,

Monotonicity, [30] Random Signs,

Notation, [30] Stopped Process,

Positive Function, [30] Stopped Martingales,

Riemann Integrability, B1] 31 Stopping Time, see also Stopping Time

Simple Function, [30]
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Strong Law, [93]
Truncated Martingales, [7§|

Uniformly Bounded Increments, 03]

Measurability

Lebesgue Measure, [9]

Measurable Function, [T3]
Borel Function, [T3]
Doob-Dynkin,
Measurability Properties,

Measurable Space, [9]

Measure, [9]
Absolute Continuity,
Bounded Convergence Thm,
Change of Measure,
Continuity,
Dominated Convergence Thm,
Fatou’s Lemma,
Inclusion/Exclusion Formula,

Monotone Convergence of Measures,

Product Measure,
Scheffe’s Lemma,
Union Bound, [I0]
Uniqueness Lemma, [I§]

Measure Space, [9]

Minkovski’s Inequality, [3§]

Moment Generating Function, [52]

Convexity of Log MGF, 53|
Differentiability, |'5_7|
Existence, |5_7|

Log MGF Asymptotics, [54]

Monotone Class Theorem, [I8] [34] [60]
Monotone Convergence Thm (MCT),

Fail,

Oscillation, [85]

Finite, [85]
Infinite, [85]

Probability Density Function (PDF), [40]

Radon Nikodym

Chain Rule, [34]

Conditional Expectation,
Derivative, [34]

Measure,

Probability Density Function, 0]

Random Process

Bounded in L',

Random Variable,

o-Algebra generated by r.v.,
X, 25 0 iff,
Continuous, [40]
Extended r.v.s,
Probability Law,
Joint CDF Uniqueness,
Joint Continuity,
Joint Law, [59]
Marginal PDF, [63]
Skorokhod Representation, [I7]

Truncation, [37]

Renewal Process, [46]

Scheffe’s Lemma,

Sequence

Cauchy Sequence,
Liminf,

Limsup,
Sandwich Limit,



Series Standard Machine, [34]

Convergence, [48] Stopping Time, [76]

Random Series Calculus, [77]
Estimate for Max. of Avg, [12] Stopped o-Algebra, [77]
Expectation, [33] Stopped Martingale, [70]
Infinite Mean, [51] Two Stop. Times, [7§]
Kolmogorov’s Max. Ineq., [42} 4] System
Kolmogorov’s Three Series, [49] [90] m-System, [9] [10}
Kolmogorov’s Two Series, [49] [89] d-System, [16] [1§]
Kronecker’s Lemma, [44] [49] Dynkinization of a Collection of Sets,
Properties, Dynkin’s Lemma,
Rate of Convergence (L?), Uniqueness Lemma,

Rate of Convergence (LP),
Tricks
Set o
Break Prob. Inequality,
Open Set,

Fatou Lemmas,
Liminf,
Limit of Indicators,

Expected Value, [37]
Symmetrization/Expanding €,

Union via Q, [T4] [17] [62] B2

Limsup, Variance,
Nullset, of a Sum,
Sandwich Limit, Vitali Set,

Set Operations, [J]
SLLN, [i7
Etemadi Ideas, [48]

Fail, [25]
Khinchine, [42]

Wald’s Identity,

Kolmogorov, 2]

Martingales, 03]

Need E | X |< oo, 20]

Proof, [42] [43] [50]

Rate of Convergence (L?),
Rate of Convergence (L?),

Truncation Lemma, [50]
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