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Introduction

Machine Learning

Goal: make decisions or predictions based on data.
Problems to solve: Estimation + Generalization

Problem Characterization: .

• Problem Class: Nature of training data (Supervised?)

• Assumptions: Source of data? Form of solution?

• Evaluation Criteria: Prediction goal? Performance measure?

Solution Characterization: .

• Model Type: Intermediate model needed? Model used?

• Model Class: Parametric class of model needed?

• Algorithm: Computational process for making predictions

Problem Class

Superv. Learning: Given inputs x(i) ∈ Rd or discrete + outputs y(i)

• Classification: y(i) takes a finite set of values

• Regression: y(i) ∈ Rk

Unsuperv. Learning: Given inputs x(i) ∈ Rd only

• Density Estimation: {x(i)}ni=1
iid∼ P(X), find P for predictions

• Clustering: Partition samples into similar groups

• Dimensionality Reduction: e.g., Princip Component Analysis

Reinforc. Learning: Learn policy π : x→ y maximizing reward

• Agent observes current state x(0)

• Selects action y(0) & gets reward r(0)
(
x(0), y(0)

)
• Environment generates new state x(1) under P

(
X|x(0), y(0)

)
Sequential Learning: (Supervised) Learn mapping from input seq
x0, . . . , xn to output seq y0, . . . , ym.
Represent Map as state machine with functions f & g:
f : compute next hidden internal state given input
g: compute output given current hidden state

Other Settings: .

• Semi-Supervised Learn: For some x(i), missing y(i)

• Active Learn.: Minimize cost of obtaining labels y(i)

• Transfer/Meta Learn: Multip tasks, data∈related distribs

Assumptions

Data: IID or Markov Chain or adversarial

True Model: Can be described by a set of hypotheses

Evaluation Criteria
Loss Function: L(g, a) between guess g & actual a

0-1 Loss: L(g, a) = I{g = a}

Squared Loss: L(g, a) = (g − a)2

Linear Loss: L(g, a) = |g − a|

Asymetric Loss: L(g, a) =


1 g = 1 & a = 0

10 g = 0 & a = 1

0 g = a = 0, g = a = 1

Model Type
No Model: Predict directly from training data without construction
of any intermediate model. ex: k-Nearest Neighbor method

With Model: Fit model to training data (get prediction rule)+ use
model to make predictions
Prediction Rule: Hypothesis y = h(x; θ)

Training Error: En(h) = 1
n

∑n
i=1 L

(
h(x(i); θ), y(i)

)
Testing Error: E(h) = 1

n′
∑n+n′
i=n+1 L

(
h(x(i); θ), y(i)

)
Model Class M/Parameter Fitting
Model Class: M, set of possible models typically parametrized by
vector of parameters Θ = (θ, θ0)

ex: Linear Function: h(x; θ, θ0) = θT x+ θ0

Algorithm
What sequence of computational instructions should we run in order
to find a good model from our class?
ex: Least-Squares Minimization Algorithm: Minimize training error
En(θ) to determine Θ for h(x; θ, θ0)

Linear Classifiers

Classification

Def. (Binary Classifier) Map x ∈ Rd to y ∈ {−1,+1}

Def. (Feature) φ : Rd 7→ Rd
′
: work with φ(x) instead of x.

Def. (Training Data) Dn :=
{

(x(1), y(1)), . . . , (x(n), y(n))
}

Input x(i) ∈ Rd×1; Output y ∈ {−1,+1}.
Def. (Hypothesis Class) H := {classifiers h : Rd → {−1,+1}}
Def. (Hypothesis) h : x 7→ y

Def. (Learning Algorithm) Procedure mapping Dn 7→ h ∈ H
Def. (Training Error) Given training dataset Dn:

En(h) = 1
n

∑n
i=1 I{h(x(i)) 6= y(i)}

Def. (Testing Error) Given testing dataset Dn′ :
E(h) = 1

n′
∑n′
i=1 I{h(x(i)) 6= y(i)}

Linear Classifier
Def. (Sign Function) sgn (x) ∈ {+1, 0,−1}, ∀x ∈ R
Def. (Linear Classifier) Hypothesis class given by:

H :=
{
h(x; θ, θ0) = sgn

(
θT x+ θ0

)
: θ ∈ Rn×1, θ0 ∈ R

}
Def. (Hyperplane PΘ induced by Θ) θT x+ θ0 = 0 =⇒ θ ⊥ PΘ

Side of θ → ⊕; Side of (−θ)→ �; On PΘ → }.
xi intercept: xi = −θ0/θi
Def. (Linear Separable Data) Training dataset Dn is lin. separable

⇐⇒ ∃(θ, θ0) s.t. y(i)(θT x(i) + θ0) > 0 ∀i = 1 . . . n

⇐⇒ h(x(i); θ, θ0) = y(i) ⇐⇒ En(h) = 0

Learning Alg. for the Linear Classifier
RANDOM-LINEAR-CLASSIFIER (Dn, k, d) :

for j = 1 to k do

Randomly sample
(
θ(j), θ

(j)
0

)
from (Rd,R)

j∗ = argminj∈{1,...,k} En
(
θ(j), θ

(j)
0

)
return

(
θ(j∗), θ

(j∗)
0

)
Note: k ↗ =⇒ En ↘

Evaluating a Learning Algorithm
Idea: (To Evaluate the Performance of a) .

Classifier h ∈ H: Measure test error En(h)

Learning Algorithm: Hard! Ex: try Cross-Validation

• Train on other datasets: get h1, . . . , hk

• Compare the hk’s performance on a new testing set

Def. (Cross-Validation) k-fold Cross Validation for evaluation
CROSS-VALIDATE (D, k) :

Divide D into k chunks: D1, . . . ,Dk of similar size
for i = 1 to k do

Train hi on D \ Di
Compute test error Ei(hi) on non-Di data

return 1
k

∑k
i=1 Ei(hi)

Note: Cross-Validation evaluates the algorithm that produces the
hypotheses h, but does NOT evaluate the hypotheses h produced.

The Perceptron

Algorithm
Def. (Perceptron − Rosenblatt (1962)) .

Training Dataset: Dn =
{

(x(i), y(i)) : x(i) ∈ Rd×1, y(i) ∈ {±1}
}n
i=1

Binary Classifier: h(x; θ, θ0); Parameters: θ ∈ Rd×1, θ0 ∈ R
Iterations: τ steps.

PERCEPTRON (τ,Dn) :

θ0 = 0, and θ =
[
0 0 . . . 0

]T
for t = 1 to τ do

for i = 1 to n do
if y(i)(θT x(i) + θ0) ≤ 0 then

θ = θ + y(i)x(i)

θ0 = θ0 + y(i)

return (θ, θ0)

Note: If alg does not enter IF loop for n iterations: En(h) = 0!
Prop: If data is linearly separable, Perceptron will find it.

Offset
Thm. (Dim. Increase) .

Given θ0, θ =
[
θ1 . . . θd

]T , and x =
[
x1 . . . xd

]T :

Let θnew =
[
θ1 . . . θd θ0

]T , and xnew =
[
x1 . . . xd 1

]T
=⇒ θTnew · xnew = θT · x+ θ0
Note: Perceptron with offset ⇔ Perceptron though origin in dim d+ 1

PERCEPTRON-THROUGH-ORIGIN (τ,Dn) :

θ =
[
0 0 . . . 0

]T
for t = 1 to τ do

for i = 1 to n do
if y(i)(θT x(i)) ≤ 0 then

θ = θ + y(i)x(i)

return θ
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Theory of the Perceptron

Proposition (Distance of a Point x) to the hyperplane (θ, θ0):

Dist(θ,θ0)(x) = 1
‖θ‖

(
θT x+ θ0

)
Def. (Margin of a Labeled Point (x, y)) w.r.t hyperplane (θ, θ0):

γ(θ,θ0)(x, y) = y · 1
‖θ‖

(
θT x+ θ0

)
Prop: γ(x, y) > 0 ⇐⇒ x is

classified correctly as y by the linear classifier (hyperplane)

Def. (Margin of a Dataset Dn) w.r.t hyperplane (θ, θ0):

γ(θ,θ0)(Dn) = mini y
(i) · 1

‖θ‖

(
θT x(i) + θ0

)
Prop: γ(Dn) > 0 ⇐⇒ all

pts in Dn are classified correctly by the linear classifier (hyperplane)
Note: If γ(Dn) > 0, γ represents the dist from hyperpln to closest pt.

Thm. (Perceptron-Through-Origin Convergence Thm) If:

(a) ∃θ∗ ∈ Rd, ∃γ > 0 s.t. y(i) · 1
‖θ∗‖

(
θ∗T x(i) + θ0

)
≥ γ ∀i = 1...n

(b) ‖x(i)‖ ≤ R ∀i = 1...n (all pts have bdd size)

Then: Perceptron-Through-Origin makes at most (R/γ)2 mistakes.

Feature Representation

Feature Transformation

Def. (X-OR Dataset) D =

[
− +
+ −

]
Proposition (Transform X-OR) φ(x) =

[
x x2

]T
=⇒ X-OR is now linearly separable in 2D.

Note: This is the basis for Kernel Methods

Polynomial Basis

Method: get φ systematically (domain independent)

Idea: Use kth-order basis:
φ : [1, x, x2, x3]→ [1, x1, . . . , x

2
1, x1x2, . . . , x1x2x3, . . .]

General:

φ : [1, x, . . . , xk]→
[
x
k1
1 x

k2
2 . . . x

kd
k

]
{k1+k2+...+kd=k|0≤ni≤k}

In kth-order basis, we have
(k′+d−1

d−1

)
terms of order k′ ≤ k.

=⇒ We have a basis of size:
∑k
k′=0

(k′+d−1
d−1

)
Discrete Features

Method: get φ deliberately with our domain in mind (can be related
to semantics)

Idea: (Encoding Strategy) Assume data takes one of k discr values:

Numeric: Standardize them! (speeds up learning algo)

φ(x) = (x− x̄)/σ with x̄ = avg(x(i)) & σ = std(x(i))

Numeric with Breakpoints: Break into bins & use one-hot
ex: Age ≶ 21 =⇒ (Age < 21)&(Age ≥ 21)

Thermometer Code: Number but no natural ordering:

0 < j ≤ k =⇒ [1, 1, . . . , 1(j), 0, . . . , 0] (vector of length k)

Factored Code: Value can be split into two factors: Treat factors
separately ex: Car → (Brand; Model)

One-Hot Code: No natural numeric/ordering/factor structure:

0 < j ≤ k =⇒ [0, 0, . . . , 0, 1(j), 0, . . . , 0] (vector of length k)

Binary Code: Bad idea! need to teach your algo to decode input...

Text: Bag-Of-Words (BOW) model:

d = # words in our vocab: vector ∈ {0, 1}d with 1(j) ⇔ word j occurs

Margin Maximization

ML as Optimization
Idea: Frame ML problem into optimization problem
+ use standard algorithms/implementations to get hypothesis h(x; Θ)

Def. (Objective Function) J(Θ;Dn): Params Θ = (θ, θ0), Data Dn
Typically: J(Θ;Dn) = 1

n

∑n
i=1 L

(
h(x(i); Θ), y(i)

)
+ λ · R(θ)

=⇒ Choose Θ∗ := argminΘ J(Θ;Dn)

Regularization

Idea: Want to perform well on un-seen data (generalization): avoid
overfitting!

Def. (Regularizer) Typically: R(Θ) = ‖Θ−Θprior‖2

ex: No prior knowledge? =⇒ Regularize towards zero R(Θ) = ‖Θ‖2

Maximize the Margin
Assumptions Classification setting, 0-1 loss

Idea: Want to maximize the margin of dataset (regularization!)

Recall: γ(θ,θ0)(Dn) = mini y
(i) · 1

‖θ‖

(
θT x(i) + θ0

)
Def. (Margin Maximization) J(Θ,Dn) = −mini γ(x(i), y(i),Θ)
=⇒ Θ∗ = argminΘ J(Θ,Dn)

=⇒ Θ∗ = argmaxΘ mini γ(x(i), y(i),Θ)

Warning: This form of the objective can be tricky to optimize as it is
only sensitive to a single data point at a time
=⇒ gradient methods won’t work very well

Idea: Use a target γref & try to find separator s.t.

(a) γ(x(i), y(i)) > γref

(b) γref is big

Def. (Hinge Loss) Lh(v) = max(1− v, 0) =

{
1− v, if v < 1

0, if v ≥ 1

Example: Lh

(
γ

γref

)
=

{
1− γ

γref
, if γ < γref

0, if γ ≥ γref

Def. (Objective Function) To maximize the margin, minimize:

J(Θ, γref ) = 1
n

∑n
i=1 Lh

(
γ(x(i),y(i),Θ)

γref

)
+ λ ·

(
1

λref

)2

= 1
n

∑n
i=1 Lh

(
1

γref ·‖θ‖
· y(i) ·

(
θT x(i) + θ0

))
+ λ ·

(
1

λref

)2

Support Vector Machines (SVM)

Idea: The scale of θ does not affect the classifier (separator) obtained:

=⇒ Pick ‖θ‖ !
= 1

γref
Note: large magin ⇔ small θ

Def. (SVM Objective Function) Want to minimize:

J(θ, θ0) = 1
n

∑n
i=1 Lh

(
y(i) ·

(
θT x(i) + θ0

))
+ λ · ‖θ‖2

Note: λ→ 0 =⇒ No regularization ; λ→∞ =⇒ θ → 0 ;
Lin. Sep. Data: very small λ =⇒ ∃ at least 1 pt on the margin

γ(x(i), y(i)) = γref = 1
‖θ‖ =⇒ y(i) ·

(
θT x(i) + θ0

)
= 1

Gradient Descent

Idea: Goal: minimize the f(Θ) = J(Dn; Θ) surface

• Start at an arbitrary point;

• Take a small step in direction of steepest descent;

• Take more small step in the new directions of steepest descent

One Dimension

Parameter: Θ ∈ R (1-dimensional!) − Initial Value: Θinit ∈ R

Step Size: η ∈ R

Function to Minimize: f(Dn; Θ) (so f : R→ R)

Derivative of the Function: f ′(Dn; Θ)

Accuracy Parameter: ε ∈ R+

1D-GRADIENT-DESCENT (Θinit, η, f, f
′, ε) :

Θ(0) = Θinit ; t = 0

while |f ′(Θ(t))| ≥ ε do
t = t+ 1

Θ(t) = Θ(t−1) − ηf ′
(
Dn; Θ(t−1)

)
return Θ(t)

Note: Other ways to terminate: cap # of iterations t, or stop when

|Θ(t) −Θ(t−1)| < ε, or when |f(Θ(t))− f(Θ(t−1))| < ε.
Note: Small η ⇒ slow convergence; Big η ⇒ oscillations or divergence
Thm. (Convex Optimization) If J(Θ) is convex:
∀ε > 0, ∃η s.t. 1D-GD converges within ε of the optimal Θ.
Note: Non-convex J: may ∃ local minima!

Multiple Dimensions

Parameter: Θ ∈ Rd+1 − Initial Value: Θinit ∈ Rd+1

Step Size: η ∈ R

Function to Minimize: f(Dn; Θ) (so f : Rd+1 → R)

Gradient of the Function: ∇Θf(Dn; Θ) =
[
∂f
∂Θ1

· · · ∂f
∂Θd+1

]T
Accuracy Parameter: ε ∈ R+

BATCH-GRADIENT-DESCENT (Θinit, η, f,∇Θf, ε) :

Θ(0) = Θinit ; t = 0

while |f(Θ(t))− f(Θ(t−1))| ≥ ε do
t = t+ 1
Θ(t) = Θ(t−1) − η∇Θf(Dn; Θ(t−1))

return Θ(t)

Application to SVM Objective

Hinge Loss: Lh(v) = max(1− v, 0) = 1− v · I{v < 1}

Derivative of Hinge Loss: L′h(v) = −1 · I{v < 1}

Objective: J(Dn; θ, θ0) ∈ R

J(Dn; θ, θ0) =
1

n

n∑
i=1

Lh

(
y

(i) · (θT x(i)
+ θ0)

)
+

1

2
λ‖θ‖2

θ-Gradient: ∇θJ(Dn; θ, θ0) ∈ Rd+1

∇θJ(Dn; θ, θ0) =
1

n

n∑
i=1

L
′
h

(
y

(i) · (θT x(i)
+ θ0)

)
y

(i)
x

(i)
+ λθ

θ0-Gradient: ∇θ0J(Dn; θ, θ0) = ∂
∂θ0

J(Dn; θ, θ0) ∈ R

∇θ0J(Dn; θ, θ0) =
1

n

n∑
i=1

L
′
h

(
y

(i) · (θT x(i)
+ θ0)

)
y

(i)
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SVM-GRADIENT-DESCENT (θinit, θ0,init, η, J, ε) :

θ(0) = θinit ; θ
(0)
0 = θ0,init ; t = 0

while |J(θ(t), θ
(t)
0 )− J(θ(t−1), θ

(t−1)
0 )| ≥ ε do

t = t+ 1

θ
(t)
0 = θ

(t−1)
0 + η ·

1

n

n∑
i=1

I
{
y

(i) · (θ(t−1)T
x

(i)
+ θ

(t−1)
0 ) < 1

}
y

(i)

θ(t) = θ
(t−1)

+

η ·
1

n

n∑
i=1

I
{
y

(i) · (θ(t−1)T
x

(i)
+ θ

(t−1)
0 ) < 1

}
y

(i)
x

(i)
+ λθ

(t−1)

return (θ(t), θ
(t)
0 )

Note: λ does not appear in θ0 updates: don’t regularize the offset!
only the slope needs to be regularized (made simpler). Offset ≈ scaling

Stochastic Gradient Descent

Idea: If gradient is in form of a sum: f(Dn; Θ) =
∑n
i=1 fi(D

(i)
n ; Θ)

Don’t take 1 small step in the direction of the gradient
→ randomly select 1 term in sum and take tiny step in that direction.
You will move in the direction of the gradient on average.

STOCHASTIC-GRAD-DESCENT (Θinit, η, f,∇Θf1, . . . ,∇Θfn, T ) :

Θ(0) = Θinit

for t = 1 to T do
Randomly get i ∈ {1, . . . , n} =⇒ Focus on (x(i), y(i)) ∈ D(i)

n

Θ(t) = Θ(t−1) − η(t) · ∇Θfi(D(i)
n ; Θ(t−1))

return Θ(t)

Thm. (Convex Optimization) If J(Θ) is convex:
∞∑
t=1

η(t) =∞ &

∞∑
t=1

η(t)
2
<∞ =⇒ SGD converges a.s. to optimal Θ

Note: For SGD, η must decrease! Ex: η ∼ 1/t
Note: • If f non-convex with many local optima: BGD gets trapped!
=⇒ taking samples from the gradient at some point Θ can make you

bounce off of local optima.
• May not want to optimize f perfectly (overfitting of training set)
=⇒ SGD can get lower test error (but probably not lower training
error) than BGD.

Regression

Data: Dn = {(x(1), y(1)), . . . , (x(n), y(n)}, with x(i) ∈ Rd×1, y(i) ∈ R.

Hypothesis: h : Rd → R; Linear: h(x; θ, θ0) = θT x+ θ0

Non-Linear Feature Transformation φ: h(x; θ, θ0) = θTφ(x) + θ0

Loss Function: Squared-Error L(guess− actual)2

Objective: Mean SE J(θ, θ0) = 1
n

∑n
i=1

(
θT x(i) + θ0 − y(i)

)2

Solution: (θ∗, θ∗0 ) = argminθ,θ0 J(θ, θ0)

OLS Analytical Solution

Def. (Ordinary Least Squares) Linear hypothesis + MSE

Assumptions x(i) augmented with row of 1’s ⇒ can ignore θ0.

X ∈ Rd×n: X =
[
x(1)| · · · |x(n)

]
, x(i) =

[
x

(i)
1 · · · x

(i)
d

]T
∈ Rd×1

Y =
[
y(1) · · · y(n)

]
∈ R1×n

W = XT ∈ Rn×d and T = Y T ∈ Rn×1

Thm. (OLS Solution) .

• Objective: JOLS(θ) = 1
n (Wθ − T )T (Wθ − T )

• Gradient: ∇θJOLS = 2
nW

T (Wθ − T )
!
= 0

• Solution: θ∗OLS = (WTW )−1WTT = (XXT )−1XY T

Regularization
Def. (Ridge Regression) .

• Objective: JRidge(θ) = 1
n

∑n
i=1

(
θT x(i) + θ0 − y(i)

)2
+ λ‖θ‖2

Warning: In what follows: θ0 included in θ!

• Gradient: ∇θJRidge = 2
nW

T (Wθ − T ) + 2λθ
!
= 0

• Solution: θ∗Ridge = (WTW + nλ1d×d)−1WTT

Note: (WTW + nλ1n×n) invertible when λ > 0

Def. (Bias-Variance Tradeoff) Hypoth h ∈ H contributes to errors
on test data by:
• Structural Err: (Bias) 6 ∃h ∈ H describing data well (H too simple)
• Estimation Err: (Variance) Not enough data to pick good h ∈ H
Note: Regularization: λ↗ ⇒ Bias ↗ & Variance ↘

Optimize via Gradient Descent

Idea: Closed form solution ∼ O(d3) to invert WTW : too long!

Def. (Ridge Gradient Descent/SGD) .

• Objective: JRidge(θ) = 1
n

∑n
i=1

(
θT x(i) + θ0 − y(i)

)2
+ λ‖θ‖2

• Gradients: ∇θJRidge = 2
n

∑n
i=1

(
θT x(i) + θ0 − y(i)

)
x(i) + 2λθ

∇θ0JRidge = ∂
∂θ0

JRidge = 2
n

∑n
i=1

(
θT x(i) + θ0 − y(i)

)
Thm. (Convex Optimization) OLS & Ridge are convex objectives!
=⇒ unique minimum & guaranteed BGD convergence to optimum for

small enough step size η

Neural Networks I

View 1: NN = Application of SGD for classification/regression with
a potentially very rich hypothesis class H
View 2: NN = Brain-inspired network of neuron-like computing
elements that learn distributed representations

View 3: NN = Method to build applications that make predictions
with huge data in very complex domains

Basic Element
Def. (Neuron/Unit/Node:)

Input: x ∈ Rm Output: a = f(z) ∈ R
Weights: w ∈ Rm Offset: w0 ∈ R

Pre-Activation: z = wT x(i) + w0 =
∑m
j=1 wjx

(i)
j + w0

Activation Function: a = f(z) = f(wT x(i) + w0)

Def. (Objective Function) Note: Use in BGD/SGD!

J(Dn;w,w0) =
∑n
i=1 L

(
NN(x(i);w,w0), y(i)

)
NN(·) = NN output ; L(guess, actual) = Loss Function

Note: Linear Classifiers with Hinge Loss + Linear Regressions with
Quadratic loss =⇒ 1 neuron with f(x) = x

Example: 1 Neuron, f(z) = ez & L(g, a) = (g − a)2:

J(w,w0) =
∑n
i=1

(
exp

(∑m
j=1 wjx

(i)
j + w0

)
− y(i)

)2

∇wJ = 2
∑n
i=1 x

(i)exp
(
wT x(i) + w0

)(
exp

(
wT x(i) + w0

)
− y(i)

)
∇w0J = 2

∑n
i=1 exp

(
wT x(i) + w0

)(
exp

(
wT x(i) + w0

)
− y(i)

)

Networks
Def. (NN) Input = x ∈ Rm; Output = a ∈ Rn (n Output Units)

Def. (Feed-Forward NN) Acyclic (neuron input ⊥⊥ of own output)
+ Data flows one way: inputs → outputs
+ NN(·) = composition of each neuron’s function

Single Layer: Linear Hypothesis

Def. (Layer) Set of non-connected units with:
. Input: x ∈ Rm ; Output/Activation: a ∈ Rn

. Fully Connected: Same inputs to each layer x
(i)
1 , . . . , x(i)

m

Layer’s Weight Matrix: W l ∈ Rm×n Offset Vect: W l
0 ∈ Rn×1

Layer Inputs: X ∈ Rm×1 Pre-Activat◦: Z = WTX +W0 ∈ Rn×1

Activation: A = f(Z) = f(WTX +W0) ∈ Rn×1 applied element-wise

Note: Single Layer ⇐⇒ Linear Hypotheses!

Multiple Layers

Def. (Layers) Set of non-connected units with:

Layer’s Weight Matrix: W l ∈ Rm
l×nl Offset: W l

0 ∈ Rn
l×1

Layer Inputs: A ∈ Rm
l×1 ; ml inputs & nl = ml+1 outputs

Pre-Activat◦: Zl = W lT Al−1 +W l
0 ∈ Rn

l×1

Activation: Al = f l(Zl) = f(W lT Al−1 +W l
0) ∈ Rn

l×1 element-wise

Activation Functions

Thm. (No Activation) If f l(Z) = Z ∀l (so activation = identity)

=⇒ AL = WLTW (L−1)T · · ·W 1TX = WTotalTX
=⇒ AL = a linear function of X! One layer is enough

Example: (Activation Functions) .
Step Function: step(z) = I{z ≥ 0} (discontinuity ⇒ hard for BGD)
Rectified Linear Unit: ReLU(z) = max(0, z)
Sigmoid/Logistic Function: σ(z) = 1

1+e−z
∈ [0, 1] ∼ probability

Hyperbolic Tangent: tanh(z) = ez−e−z

ez+e−z
∈ [−1, 1]

Softmax Funct◦: softmax(z) =

ez1/∑n
i=1 e

zi

· · ·
ezn/

∑n
i=1 e

zi

 ∈ [0, 1]n, ∀Z ∈ Rn

Prop: Softmax(z) ∼ a prob. distribution ( (∵)
∑

components = 1)

Prop: d
dzReLU(z) = step(z)
d
dzσ(z) = σ(z) · (1− σ(z))
d
dz tanh(z) = 4

(ez+e−z)2

Note: ReLU: use in hidden layers
Sigmoid: binary classification output
Softmax: multi-class classification

output
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Error Back-Propagation

Note: We will frame it for SGD; For BGD do
∑
i∇WL

(i)

Idea: (Goal) Compute ∇WL (NN(x;W ), y), W := {W (l),W
(l)
0 }

L
l=1

Proposition (Final Layer) loss = L (NN(x;W ), y) = L(AL, y)

=⇒
∂loss

∂WL︸ ︷︷ ︸
mL×nL

=
∂ZL

∂WL

∂AL

∂ZL
∂loss

∂AL
= A

L−1︸ ︷︷ ︸
mL×1

(
∂loss

∂ZL

)T
︸ ︷︷ ︸

1×nL

(∵) AL = fL(ZL) ; ZL = WLT AL−1 +WL
0

Proposition (Any Layer)
∂loss

∂W l︸ ︷︷ ︸
ml×nl

= A
l−1︸ ︷︷ ︸

ml×1

(
∂loss

∂Zl

)T
︸ ︷︷ ︸

1×nl

Proposition (First Layer) Note: ml+1 = nl

∂loss

∂Z1︸ ︷︷ ︸
n1×1

=
∂A1

∂Z1︸ ︷︷ ︸
n1×n1

∂Z2

∂A1︸ ︷︷ ︸
m2×n2

∂A2

∂Z2︸ ︷︷ ︸
n2×n2

· · ·
∂AL−1

∂ZL−1︸ ︷︷ ︸
nL−1×nL−1

∂ZL

∂AL−1︸ ︷︷ ︸
mL×nL

∂AL

∂ZL︸ ︷︷ ︸
nL×nL

∂loss

∂AL︸ ︷︷ ︸
nL×1︸ ︷︷ ︸

∂loss/∂Z2︸ ︷︷ ︸
∂loss/∂A1

Note: (Dimensions) Recall that:

• ∂loss

∂AL
= nL × 1

• ∂Zl

∂Al−1 = W l = ml × nl and ∂Zl

∂Wl = Al−1 , ∂Zl

∂Wl
0

= I
nl×nl

• ∂Al

∂Zl
= W l = nl × nl

Thm. (First Layer) We finally get:

∂loss

∂Z1︸ ︷︷ ︸
n1×1

=
∂A1

∂Z1︸ ︷︷ ︸
n1×n1

W
2︸︷︷︸

m2×n2

∂A2

∂Z2︸ ︷︷ ︸
n2×n2

· · ·
∂AL−1

∂ZL−1︸ ︷︷ ︸
nL−1×nL−1

W
L︸︷︷︸

mL×nL

∂AL

∂ZL︸ ︷︷ ︸
nL×nL

∂loss

∂AL︸ ︷︷ ︸
nL×1

Thm. (Any Layer: Error Back-Propagation) We finally get:

∂loss

∂Zl︸ ︷︷ ︸
nl×1

=
∂Al

∂Zl︸ ︷︷ ︸
nl×nl

W
l+1︸ ︷︷ ︸

ml+1×nl+1

∂Al+1

∂Zl+1︸ ︷︷ ︸
nl+1×nl+1

· · · W
L︸︷︷︸

mL×nL

∂AL

∂ZL︸ ︷︷ ︸
nL×nL

∂loss

∂AL︸ ︷︷ ︸
nL×1

Note: Like a “blame propagat◦”: how much is each module to blame?
• Forward: input → output
• Backward: input, output, ∂loss/∂output → ∂loss/∂input
• Weight Grad: input, ∂loss/∂output → ∂loss/∂W

Training
Idea: (Goal) SGD for a Feed-Forward NN

SGD-NEURAL-NETS (Dn, T, L, (m1, . . . ,mL), (f1, . . . , fL)) :

for l = 1 to L do . Initialize W l matrix and W l
0 vector

W l
ij ∼ N

(
0, 1

ml

)
. ml = # of input units

W l
0j ∼ N (0, 1)

for t = 1 to T do
i = Unif {1, . . . , n} ; A0 = x(i)

for l = 1 to L do . Forward pass: get AL

Zl = W lT Al−1 +W l
0

Al = f l(Zl)
loss = L(AL, y(i))

for l = L to 1 do
if l = L then . Error Back-Propagation

∂loss

∂Al
= ∂loss

∂AL

else
∂loss

∂Al
= ∂loss

∂Zl+1
∂Zl+1

∂Al

∂loss

∂Zl
= ∂loss

∂Al
∂Al

∂Zl

∂loss

∂Wl = ∂loss

∂Zl
∂Zl

∂Wl = ∂loss

∂Zl
Al−1 . Get Gradient

∂loss

∂Wl
0

= ∂loss

∂Zl
∂Zl

∂Wl
0

= ∂loss

∂Zl
w.r.t Weights

W l = W l − η(t) · ∂loss
∂Wl . SGD Update

W l
0 = W l − η(t) · ∂loss

∂Wl
0

return
{

(W 1,W 1
0 ), . . . , (WL,WL

0 )
}

Loss Functions & Activation Functions

Loss fL

Squared Linear
Hinge Linear
NLL Sigmoid

NLLM Softmax

Idea: (Loss Function Matching) Match Loss Function with
Activation Function of last layer!

Two-Class Classification & Log Likelihood

Idea: For Classification:
X Hinge loss: smoother than 0-1 loss (which is not good for BGD)
X NLL Loss: nice probabilistic interpretation + extends to multi-class

Assumptions Output layer: Activation function f l = sigmoid.
Note: So output aL ∈ [0, 1] ∼ P (y(x) = 1), (where labels y ∈ {0, 1})

Idea: (Goal) We want to maximize:
P (NN assigns correct labels to all inputs)

=
∏n
i=1(a(i))y

(i)
· (1− a(i))1−y(i)

Note: Maximize the log!

Def. (Negative Log Likelihood − NLL) Log Loss/Cross Entropy:

LNLL(a(i), y(i)) := −
(
y(i) log a(i) + (1− y(i)) log(1− a(i))

)
Objective: J(Dn;W ) :=

∑n
i=1 LNLL(a(i), y(i))

Multi-Class Classification & Log Likelihood

Assumptions K = # Classes
Labels: 1-hot vector y = [y1, . . . , yK ]T with yk = 1 if xk ∈ Class k

Output layer: Activation function f l = Softmax.
So Output aL = [a1, . . . , aK ]T ∈ [0, 1]K ∼ Prob Dist over all K classes

Idea: (Goal) We want to maximize:

P (NN assigns correct class to all inputs) =
∏n
i=1

∏K
k=1(a

(i)
k )y

(i)
k

Note: Maximize the log!

Def. (Negative Log Likelihood Multiclass − NLLM) .

LNLLM (a(i), y(i)) := −
∑K
k=1 y

(i)
k log a

(i)
k

Objective: J(Dn;W ) :=
∑n
i=1 LNLLM (a(i), y(i))

Note: If k = 2: y2 = 1− y1 and a2 = 1− a1.

Neural Networks II

Parameter Optimization
Idea: Take advantage of structure of Loss Function + Hypothesis
Class to improve optimization of weights.

Batches

Assumptions Objective: J(Dn;W ) =

n∑
i=1

L
(
h(x

(i)
;W ), y

(i)
)

Idea: Update Rules:

• BGD: W = W − η
∑n
i=1∇WL

(
h(x(i);W ), y(i)

)
• SGD: W = W − η(t)∇WL

(
h(x(i);W ), y(i)

)
, i ∼ Unif{1, . . . , n}

• Size k Mini-Batch: W = W − η
∑k
i=1∇WL

(
h(x(i);W ), y(i)

)
Note: BGD = too much computation if n large
SGD = if data has a lot of variability, η must be very small to average
moving over competing directions ⇒ slow

Def. (Mini-Batch of size k) Between BGD and SGD!
• Select k datapoints uniformly at random from data Dn
• Update over the batch: W = W − η

∑k
i=1∇WL

(
h(x(i);W ), y(i)

)
Note: k = n =⇒ BGD ; k = 1 =⇒ SGD

Idea: Randomly shuffle data Dn, and cut into ∼ n/k batches of size k.

MINI-BATCH-SGD (NN,Dn, k) :

n = length(Dn)
while not terminated do

Run RANDOM-SHUFFLE (Dn)
for i = 1 to n/k do

Run BATCH-GRADIENT-UPDATE (NN,Dn[(i− 1)k : ik])

Adaptive Step-Size

Goal: Choose step size η to avoid exploding/vanishing gradients in
back-propagation due to multiplication
=⇒ Use independent step-size parameter for each weight + update

based on local view of how the gradients updates have performed
=⇒ Need different η in each layer & for each weight

Running Averages:
Idea: Estimate a weighted avg of a sequence of data
Input: Sequence a1, a2, . . . , aT
Output: Sequence of running avg values A0, A1, . . . , AT

Def. (Running Avg)

{
A0 = 0

At = γtAt−1 + (1− γt)at
with γt ∈ (0, 1)

Example: (Moving Avg) Cst γt = γ: AT =
∑T
t=0 γ

T−t · (1− γ)at
Also called Decaying Average!
Note: Later inputs at have more effect on At than early inputs

Example: (Equal-Weighted Avg) γt = t−1
t : AT = 1

T+1

∑T
t=0 at

Momentum:
Idea: Special case of running avg to describe strategies to compute η
Momentum = “avg” recent grad updates to avoid bounce back & forth
=⇒ Smoothening of trajectory

Def. (Momentum) Start with V0 = 0:

• Def 1:

{
Vt = γ · Vt−1 + η · ∇W J(Wt−1)

Wt = Wt−1 − Vt

• Def 2:

{
Mt = γ ·Mt−1 + (1− γ) · ∇W J(Wt−1)

Wt = Wt−1 − η̃ ·Mt

Def 1 ⇐⇒ Def 2: use η := η̃ · (1− γ)

Note: Def 2: gradient update with step size η̃ on Moving Avg of
gradients with param γ
Prop: Vt bigger in dims of ∇θ that consistently have same sign
Note: Need to set 2 extra params: η & γ −→ usually γ ∼ 0.9
Prop: γ small =⇒ no averaging/usual no-momentum method
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Adadelta:

Idea: BGD/SGD can be slow if J(W ) has a plateau (flat region)

Goal: Pick large η in flat parts; small η in steep parts
=⇒ Care about magnitude of gradient

Def. (Adadelta) In each layer of the NN:
gt,j = ∇W J(Wt−1)j
Gt,j = γ ·Gt−1,j + (1− γ) · g2

t,j =⇒ large when steep/small when flat

Wt,j = Wt−1,j − η√
Gt,j+ε

· gt,j −→ use ε to avoid blow-ups

Gt,j = Moving Avg of square (ignore sign) of grad’s jth component

Adam:

Idea: Today’s default method to manage step sizes η in NN
=⇒ Combine momentum + Adadelta ideas!

Warning: Adam might actually violate SGD convergence conditions!
Paper: arxiv.org/abs/1705.08292

Def. (Adam) .
Step 1: Moving Avg of Grad & (Grad)2 ∼ mean/var of weight j’s grad
m0 = v0 = 0

gt,j = ∇W J(Wt−1)j
mt,j = B1 ·mt−1,j + (1− B1) · gt,j
vt,j = B2 · vt−1,j + (1− B2) · g2

t,j

Step 2: Bias-Correction for initializing m0 = v0 = 0m̂t,j = 1
1−Bt1

·mt,j
v̂t,j = 1

1−Bt2
· vt,j

Step 3: Gradient update Wt,j = Wt−1,j − η · 1√
v̂t,j+ε

m̂t,j

Suggestion: Use B1 = 0.9, B2 = 0.999, and ε = 10−8

Note: Adam is not very sensitive to (B1, B2, ε) parameters

Implement: Store matrix for (mlt, v
l
t, g

l
t, (g

l
t)

2) in each layer of NN.

Regularization

Recap: Optimize loss on training data =⇒ overfitting possible
Large Deep NN: a lot of data & params ∼ actually not major issue
Still want to make sure that minimizing training loss generalizes well

Methods For Ridge Regression

Weight Decay:

Goal: Penalize the norm of all the weights ∼ Ridge Regression

Def. (Weight Decay) Objective:

J(W ) =
∑n
i=1 L

(
NN(x(i);W ) , y(i)

)
+ 1

2λ‖W‖
2 , λ ∈ (0, 1)

Proposition (Weight Updates) Using weight decay: (η ∈ (0, 1))

Wt = Wt−1(1− λη)− η · ∇WL
(
NN(x(i);Wt−1) , y(i)

)
(∵) Wt = Wt−1 − η ·

[
∇WL

(
NN(x(i);Wt−1) , y(i)

)
+ λWt−1

]
Note: “Decay” Wt−1 by a factor of (1− λη) + take a gradient step

Early Stopping: (Equivalent to Weight Decay)

Def. (Epoch) One pass through training (or could be more)

Def. (Early Stopping) At each epoch: evaluate loss of current W on
a validation set. =⇒ Stop when error starts to increase systematically

Noise Addition [Bishop]:(Equivalent to Weight Decay)

Def. (Noise Addition) Perturb the x(i) values of training data:
Add small amount of N(0, σ2

err) noise before each gradient computation
Note: Overfitting ↘ as training data perturbed on each training step

Dropout

Idea: Instead of perturbing data each time: perturb the network!

Note: Good for Deep Learning + robust to data perturbation

Def. (Dropout) During training phase, for each training example:

For each unit −→ randomly pick alj ∼ Ber(1− p) =⇒ aij ∈ {0, 1}
With prob p: alj = 0⇒ no contrib to output & no grad update for unit
After training: × all weights by p⇒ achieve same avg activation levels

Proposition (Dropout Implementation) During Training,

• On each Forward Pass: al = f(zl) ∗ dl, with dl ∈ {Ber(1− p)}n
l

• Backwards Pass: no further changes (depends on al anyway)
−→ Common to set p = 0.5 Note: ∗ = componentwise ×

Batch Normalization

Ref. arxiv.org/abs/1502.03167

Idea: (Covariate Shift) Input: X ∼ PX =⇒ Output A ∼ PX,W
But A = input to 2nd layer of NN
=⇒ Distrib of input changes each time we update weights W
=⇒ Standardize input values for each mini-batch!

Note: Batch Normalization has regularization effect!
Each mini-batch of data is mildly perturbed: overfitting ↘

Def. (Batch Norm) Add Batch-Norm Unit before activation module

Zl ∈ Rn
l×K −→ Ẑl ∈ Rn

l×K −→ Al ∈ Rm
l×K (K = batch size)

Forward Pass: For each feature value i ∈ {1, . . . , nl},
µli =

1

K

K∑
j=1

Z
l
ij =⇒ µl ∈ Rn

l×1

σli =

√√√√ 1

K

K∑
j=1

(
Zlij − µi

)2
=⇒ σl ∈ Rn

l×1

=⇒ Ẑlij := G
l
i ·

Zlij − µ
l
i√

(σli)
2 + ε

+ B
l
i (Gli & Bli allows for flexibility)

Backwards Pass: Given ∂L

∂Ẑl
, want

{
∂L

∂Zl
(back-propagation)

∂L

∂Gl
& ∂L

∂Bl
(W l grad updates)



∂L

∂Gli
=

K∑
k=1

∂L

∂Ẑlik
·
∂Ẑlik
∂Gli

=
K∑
k=1

∂L

∂Ẑlik
·
Zlik − µ

l
i√

(σli)
2 + ε

∂L

∂Bli
=

K∑
k=1

∂L

∂Ẑlik
·
∂Ẑlik
∂Bli

=

K∑
k=1

∂L

∂Ẑlik

Thm. (Back-Propagation) Given ∂L

∂Ẑl
: (using δij = I{i = j})

∂L

∂Zlij
=

K∑
k=1

∂L

∂Ẑlik
·Gli ·

1

K · σli
·
(
δjk ·K − 1−

(Zlik − µ
l
i)(Z

l
ij − µ

l
i)

(σli)
2

)
(∵) ∃ dependencies across the batch, not across the unit outputs:

∂L

∂Zlij
=

K∑
k=1

∂L

∂Ẑlik
·
∂Ẑlik
∂Zlij
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