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Introduction

Machine Learning

Goal: make decisions or predictions based on data.
Problems to solve: Estimation + Generalization

Problem Characterization:

e Problem Class: Nature of training data (Supervised?)
e Assumptions: Source of data? Form of solution?

e Evaluation Criteria: Prediction goal? Performance measure?
Solution Characterization:

e Model Type: Intermediate model needed? Model used?
e Model Class: Parametric class of model needed?

e Algorithm: Computational process for making predictions

Problem Class

Superv. Learning: Given inputs z(® € R? or discrete + outputs y(i)
o Classification: y("’) takes a finite set of values
o Regression: y(i) c RF

Unsuperv. Learning: Given inputs z(® e r? only

e Density Estimation: {z(i)};;l id P(X), find P for predictions
e Clustering: Partition samples into similar groups

e Dimensionality Reduction: e.g., Princip Component Analysis
Reinforc. Learning: Learn policy 7 : ¢ — y maximizing reward
e Agent observes current state z(®

e Selects action y(o) & gets reward r(© (ww), y(o))
e Environment generates new state = under P (X\z(o), y(o))

Sequential Learning: (Supervised) Learn mapping from input seq
xg, ..., Ty to output seq yo, ..., Ym-

Represent Map as state machine with functions f & g:

f: compute next hidden internal state given input

g: compute output given current hidden state

Other Settings:

e Semi-Supervised Learn: For some x(”, missing y(i')
i

e Active Learn.: Minimize cost of obtaining labels y( )

e Transfer/Meta Learn: Multip tasks, data€related distribs

Assumptions
Data: IID or Markov Chain or adversarial

True Model: Can be described by a set of hypotheses

Evaluation Criteria

Loss Function: L(g,a) between guess g & actual a

0-1 Loss: L(g,a) =1{g = a}

Squared Loss: L(g,a) = (g — a)?

Linear Loss: L(g,a) = |g — a

1 g=1&a=0

10 g=0&a=1

0 g=a=0,g=a=1

Asymetric Loss: L(g,a) =

Model Type

No Model: Predict directly from training data without construction
of any intermediate model. ex: k-Nearest Neighbor method

With Model: Fit model to training data (get prediction rule)+ use
model to make predictions
Prediction Rule: Hypothesis y = h(z;0)

Training Error: £,(h) = 237" L (h(m(i); 0), y(i))

n i=
’
n+n

Testing Error: £(h) = ﬁ i1 L (h(x(i); 0), y(i))
Model Class M /Parameter Fitting
Model Class: M, set of possible models typically parametrized by

vector of parameters © = (60, 0)
ex: Linear Function: h(z;0,00) = 0Tz + 0

Algorithm

What sequence of computational instructions should we run in order
to find a good model from our class?

ex: Least-Squares Minimization Algorithm: Minimize training error
£,(0) to determine © for h(z; 0, 0p)

Linear Classifiers

Classification
Def. (Binary Classifier) Map = € R? to y € {—1,+1}
Def. (Feature) ¢ :R?% — RY: work with ¢(z) instead of z.
Def. (Training Data) D, := {(m<1),y(1)), oo (2 y(”))}
Input (Y € R4*Y; Output y € {—1, +1}.
Def. (Hypothesis Class) H := {classifiers h : R* — {—1,+1}}
Def. (Hypothesis) h:z—y
Def. (Learning Algorithm) Procedure mapping D,, — h € H
Def. (Training Error) Given training dataset D,,:
En(h) = + X0 Hh(zW) #y D}
Def. (Testing Error) Given testing dataset D,,/:

’ . .
E(h) = 5 3 Ha@®) # 4}

Linear Classifier

Def. (Sign Function) sgn(z) € {+1,0,—1}, Vz € R

Def. (Linear Classifier) Hypothesis class given by:

H = {h(m;e, 0p) = sgn <0T1: + 00) 10 e R g, € ]R}

Def. (Hyperplane Pg induced by ®) 6Tz 46y =0 = 6 L Pe
Side of 8 — @; Side of (—0) — ©; On Pg — ©.

x; intercept: x; = *90/91'

Def. (Linear Separable Data) Training dataset D,, is lin. separable
< 3(0,00) s.t. yP (0T +60) >0Vi=1...n

— h(=zD;0,00) =y'Y —= E,(h) =0

Learning Alg. for the Linear Classifier

for j =1 to k do
Randomly sample (0(j), Géj)) from (RY, R)

it = argminjeq1,... k) En (Q(j), Qéj))

return (9(j*), Géj*))
Note: k£ = &, \,
Evaluating a Learning Algorithm
Idea: (To Evaluate the Performance of a)
Classifier h € H: Measure test error &, (h)
Learning Algorithm: Hard! Ex: try Cross-Validation
s hi

e Compare the hi’s performance on a new testing set

e Train on other datasets: get hy,...

Def. (Cross-Validation) k-fold Cross Validation for evaluation

Divide D into k chunks: Dy, ..
for i =1 to k do
Train h; on D\ D;
Compute test error &£;(h;) on non-D; data
return 4 Sk Ei(hi)
Note: Cross-Validation evaluates the algorithm that produces the
hypotheses h, but does NOT evaluate the hypotheses h produced.

., Dy of similar size

The Perceptron

Algorithm
Def. (Perceptron — Rosenblatt (1962))

Training Dataset: D, = {(w<i),y(i)) s e REXT 4 ¢ {il}}n
i=1

Binary Classifier: h(z;0,00);

Iterations:

Parameters: 6 € RYX!, 9, € R

T steps.

90:0,and9:[0 0
for t =1 to 7 do
for i =1 to n do
if ¥y (672 4 6,) < 0 then
0=0+ y(i)w(i)
o = 0o + y™
return (0, 6o)
Note: If alg does not enter IF loop for n iterations: &, (h) = 0!
Prop: If data is linearly separable, Perceptron will find it.

Offset

Thm. (Dim. Increase)
Given 60y, 0 = [6’1

Let Opew = [91 ... B4 GO}T, and Tnew = [zl .. xg
= 0L Tnew =07 -z + 0o

Note: Perceptron with offset < Perceptron though origin in dim d 4 1

0]”

Gd}T,anda:: [x1 zd}T:

11"

0= [0 0o ...
fort =1 to 7 do
for i =1 to n do
if ¥ (6T2(M) <0 then
0=104+ y(i)w(i)
return 60

0]”
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Theory of the Perceptron

Proposition (Distance of a Point x) to the hyperplane (6, 6o):
Dist(g,0.) (z) = “9” (9 T + 90)

Def. (Margin of a Labeled Point (x,y)) w.r.t hyperplane (6, 60):
Y0,00) (T, Y) =y - ﬁ (GT:U + 00) Prop: y(z,y) >0 <= zis
classified correctly as y by the linear classifier (hyperplane)

Def. (Margin of a Dataset D,,) w.r.t hyperplane (0, 6p):
Y(6,60)(DPn) = min; y® . ”9” <9T @ +90) Prop: v(D,) >0 <= all

pts in D,, are classified correctly by the linear classifier (hyperplane)
Note: If v(D,,) > 0, v represents the dist from hyperpln to closest pt.

Thm. (Perceptron-Through-Origin Convergence Thm) If:

(a) 36" € RY, 3y > 0 sty - H

(e*T O 90) >y Vi=1l.n

() [|z?| < RVi=1...n (all pts have bdd size)
Then: Perceptron-Through-Origin makes at most (R/~v)? mistakes.

Feature Representation

Margin Maximization

Gradient Descent

Feature Transformation
_[- +
Def. (X-OR Dataset) D = Lo

Proposition (Transform X-OR) ¢(z) = [z zz]T
— X-OR is now linearly separable in 2D.

Note: This is the basis for Kernel Methods

Polynomial Basis

Method: get ¢ systematically (domain independent)
Idea: Use k'"-order basis:

2 .3 2
¢:[l,z, 2%, z°] = [1,21,...,2], 2122, ...,T1T223, ...
General:

ke k k
¢:[lz,...,z" — [z11z22 . zkd]
{k1+kot...+kg=k|0<n; <k}

In k"-order basis, we have (k ;_dfl) terms of order k' < k.

k'+d—1)

= We have a basis of size: lez/:o ("o

Discrete Features

Method: get ¢ deliberately with our domain in mind (can be related
to semantics)
Idea: (Encoding Strategy) Assume data takes one of k discr values:

Numeric: Standardize them! (speeds up learning algo)
é(z) = (x — 2)/o with Z = avg(z?) & o = std(z(?))

Numeric with Breakpoints: Break into bins & use one-hot
ex: Age S 21 = (Age < 21)&(Age > 21)

Thermometer Code: Number but no natural ordering:
0<j<k = [1,1,4..,1(7),07 ..., 0] (vector of length k)

Factored Code: Value can be split into two factors: Treat factors
separately ex: Car — (Brand; Model)

One-Hot Code: No natural numeric/ordering/factor structure:
0<j<k = [0,0,...,0,19,0,...,0] (vector of length k)
Binary Code: Bad idea! need to teach your algo to decode input...

Text: Bag-Of-Words (BOW) model:
d = # words in our vocab: vector € {0,1}% with 1) & word j occurs

ML as Optimization

Idea: Frame ML problem into optimization problem
+ use standard algorithms/implementations to get hypothesis h(z; ©)

Def. (Objective Function) J(©;D,): Params © = (0, 6,), Data D,,
Typically: J(©;D,) = 257 | L (h(m“);@),y(“) +A-R(6)
—> Choose ©" := argming J(©; D,,)

Regularization

Idea: Want to perform well on un-seen data (generalization): avoid
overfitting!

Def. (Regularizer) Typically: R(©) = ||© — Opior||?

ex: No prior knowledge? = Regularize towards zero R(©) = [|©|?

Maximize the Margin
Assumptions Classification setting, 0-1 loss
Idea: Want to maximize the margin of dataset (regularization!)
(672 + 60)
Def. (Margin Maximization) J(©,D,) =

— O" = argmine J(©,D,)
— ©* = argmaxe min; y(zV,

Recall: y(g,9,)(Dn) = min; y* - ToT

— min; v(z,y, ©)

y?,0)
Warning: This form of the objective can be tricky to optimize as it is

only sensitive to a single data point at a time
— gradient methods won’t work very well

Idea: Use a target v,y & try to find separator s.t.
(@) (@D, yD) > yep
(b) Vrey is big

Def. (Hinge Loss) Ly (v) = max(l —wv,0) = {é - 1; v i 1
9 v -
1— 2= ify <
Example: Ly ( ) = Tref VS et
Tref 0, if v > Yres

+
loss =0

_—

incorrect

Yref
correct but margin|< v,

Def. (Objective Function) To maximize the margin, minimize:

(1) () o 2
KO 7re) = & Siy I (22 ) 0 (47)
1

= 250 L (5per v - (6729 +00) ) + 1 (Tef)z

Support Vector Machines (SVM)
Idea: The scalc of 6 does not affect the classifier (separator) obtained:

= Pick ||0H =

EON loss = 0. .

loss =0

YrefN

— Note: large magin < small 0
'vr ef

Def. (SVM Objective Function) Want to minimize:
J(0,60) = 2 0y Lo (v - (072D +60) ) + A+ [10]12
Note: A - 0 = No regularization ; XX —o00 = 6 —0;
Lin. Sep. Data: very small A\ = 3 at least 1 pt on the margin

7($(i))y(i)) = Ypes = ﬁ — y(z‘> . (eTw(i) +90) =1

Idea: Goal: minimize the f(©) = J(D,,; ©) surface
e Start at an arbitrary point;
e Take a small step in direction of steepest descent;

e Take more small step in the new directions of steepest descent

One Dimension
Parameter: © € R (1-dimensionall) — Initial Value: Ojniy € R
Step Size: n € R

Function to Minimize: f(D,;®) (so f:R — R)

Derivative of the Function: f'(D,;0)

Accuracy Parameter: ¢ € Ry
0 =0, ; t=0
while |f'(©®)| > ¢ do

t=t+4+1

—ptt-1 _ nf (Dn; 9(171)>
return ©(*)
Note: Other ways to terminate: cap # of iterations ¢, or stop when
[©® — et~V < ¢ or when [f(©1)) — f(OFD)| < e.
Note: Small n = slow convergence; Big n = oscillations or divergence
Thm. (Convex Optimization) If J(©) is convex:
Ve > 0,3n s.t. 1D-GD converges within € of the optimal ©.
Note: Non-convex J: may 3 local minimal

Multiple Dimensions
© € RY*! _ Initial Value: Ojni € R
Step Size: n € R

Parameter:
Function to Minimize: f(D,;0) (so f:R*T! - R)

. . of af 1T
Gradient of the Function: Vg f(D,;0) = [W s m]

Accuracy Parameter: ¢ € R
O =0 ; t=0
while |f(©@®) — f(©¢~1)| > ¢ do

t=t+1
o) — g(t-1)

return )
Application to SVM Objective
Lp(v) =max(l —v,0)=1—v-I{v < 1}
L;L('u) =-1-I{v < 1}

— Ve f(Dn; ©7Y)

Hinge Loss:
Derivative of Hinge Loss:

Objective: J(Dn,G 0p) €ER
J(Dn;0,00) = — ZL (v - @72 +00)) + S AlI0)1*

z—l
f-Gradient: Vy.J(D,;0,00) € RIT?

1 X ) . ) )

VoI (Dns6,00) = = > L, (31 - (672 +60)) s + 20
nis

0o-Gradient: Vg,J(Dn;0,600) = 55-J(Dn;6,600) € R

1 - 7 7
Voo I (Dni0.60) = — > L (v - (072 + 60)) 4
i=1
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0 = Oiic 9((30> =60t ; t=0
while [J(6®, 657y — 7(6¢=1,6{!" V)| > ¢ do
t=t+1
_ 1 & ; _ ; _ ;
eét) — eéf 1)+ n- -~ ZH {y(’t) . (G(t T (9 + eéf 1)) < 1} y(’t)
i=1
g(t) 9(75*1)_,'_

- *Z {0 (D720 ol D) <1}y @2 4 aptD

return (0“) G(t))
Note: A\ does not appear in 6y updates: don’t regularize the offset!
only the slope needs to be regularized (made simpler). Offset & scaling

Stochastic Gradient Descent

Idea: If gradient is in form of a sum: f(Dn;0) = > ", fi (DP;0)
Don’t take 1 small step in the direction of the gradient

— randomly select 1 term in sum and take tiny step in that direction.
You will move in the direction of the gradient on average.

0 = Oy

fort =1to T do
Randomly get i € {1,...,n} = Focus on (z?,
0 =o' —n(t)- Ve fi(D; 007 1)

return ©®

y") e DY

Thm (Convex Optlmlzatlon) If J(©) is convex:

Zn(t oo & Zn(t
t=1

Note: For SGD, n must decrease! Ex: n ~ 1/t

Note: e If f non-convex with many local optima: BGD gets trapped!
— taking samples from the gradient at some point © can make you
bounce off of local optima.

e May not want to optimize f perfectly (overfitting of training set)
= SGD can get lower test error (but probably not lower training
error) than BGD.

< oo = SGD converges a.s. to optimal ©

Regression

Data: D, = {(z),y (=™, y €R.

Hypothesis: h: R? — R; Linear: h(z;0,00)

My, ... y(™}, with (9 e R4X?,

=0Tz + 6o
Non-Linear Feature Transformation ¢: h(z;0,600) = 67 ¢(x) + 6o

Loss Function: Squared-Error L(guess — actual)?
) N 2
Objective: Mean SE J(0,00) = % DM (QT;E(U + 60 — y(@))

Solution: (0*,6]) = argming g, J (6, 6o)

OLS Analytical Solution
Def. (Ordinary Least Squares) Linear hypothesis + MSE
Assumptions z® augmented with row of 1’s = can ignore 0.
X e RV X = [z z™], 20 = [935) . ~zf;')]T € Rix1
Y = [y(l) L y(n)} c RIx™

W=XxTeR"™ and T=Y" € R"*!

Thm. (OLS Solution)

e Objective: Jors(0) = %(WQ —
e Gradient: VgJoLs = 2W7T (W6 —
e Solution: 0%, = (WTW)='wTT

T(We —T)
™0
=(xxT)=1xyT

e Solution: 034, =
Note: (WTW + nAl, xn) invertible when A > 0

o Objective: Jriage(0) = £ X0, (672 + 00 —

o Gradients: Vg JRidge =

Regularization
Def. (Ridge Regression)

. . 2
o Objective: Jriage(0) = L 7 (eTzW + 00 — y“)) + A[I0]12

Warning: In what follows: 0y included in 6!

o Gradient: Vo Jriage = 2W7T (W0 — T) + 230 = 0

(WTW 4+ nAlgxq) *WTT

Def. (Bias-Variance Tradeoff) Hypoth h € H contributes to errors
on test data by:

e Structural Err: (Bias) Ah € H describing data well (H too simple)
e Estimation Err: (Variance) Not enough data to pick good h € H
Note: Regularization: A 7 = Bias ' & Variance Y\

Optimize via Gradient Descent

Idea: Closed form solution ~ O(d®) to invert W7 W: too long!
Def. (Ridge Gradient Descent/SGD)

AN 2
v )+ A0
25 (OT:n(i) + 0o — y<i)) z() 4+ 2x0
2y (9T$<i> + 60 — yu))

Thm. (Convex Optimization) OLS & Ridge are convex objectives!

—> unique minimum & guaranteed BGD convergence to optimum for
small enough step size n

Neural Networks I

_ _
Voo JRidge = T%dege =

View 1: NN = Application of SGD for classification/regression with
a potentially very rich hypothesis class H

View 2: NN = Brain-inspired network of neuron-like computing
elements that learn distributed representations

View 3: NN = Method to build applications that make predictions
with huge data in very complex domains

Basic Element

Def. (Neuron/Unit/Node:)

pre-activation

X1 output
wi | |
(D)=
Win
Xm Wo -
] activation
input
Input: z € R™ Output: a = f(z) €R
Weights: w € R™ Offset: wg € R
Pre-Activation: z = w7z 4w = Z;” L wj ac ) 4w
Activation Function: a = f(z) = f(wTz® + w)

Def. (Objective Function) Note: Use in BGD/SGD!
J(Dpw,wo) = 7, L (NN( @ 2w, wo) W)
NN(-) = NN output ; L(guess, actual) = Loss Function

Note: Linear Classifiers with Hinge Loss + Linear Regressions with
Quadratic loss = 1 neuron with f(z) =«

Example: 1 Neuron, f(z) =e* & L(g, a)=(g— a)2:
J(w,wo) =377, (exp (Zm 1 wJac )+ wo) - (i))2
Vwd =230, m(”exp (w (M 4 wo) (exp (w 20 4 wo) — y(i))

T @ + wo) (exp (w (9 + wo)

_ y<i>)

Vwgd =237 exp (w

Networks

Def. (NN) Input =z € R™; Output = a € R" (n Output Units)
Def. (Feed-Forward NN) Acyclic (neuron input L of own output)
+ Data flows one way: inputs — outputs

+ NN(-) = composition of each neuron’s function

Single Layer: Linear Hypothesis

Def. (Layer) Set of non-connected units with:

Input: z € R™ ; Output/Activation: a € R"

Fully Connected: Same inputs to each layer :v( ) . z(i)
Layer’s Weight Matrix: W! € R™*" Oﬂ"set Vect Wl c R*X1
Layer Inputs: X € RrR™ X1 Pre-Activat®: =wTx + Wy € RX1
Activation: A = f(Z) = f(WTX + W) € R"Xl applied element-wise

Note: Single Layer <= Linear Hypotheses!

|
layer 1

input output
Multiple Layers
Def. (Layers) Set of non-connected units with:
Uynl l
Layer’s Weight Matrix: W! € R™ X®  Offset: Wé e R™ X!
1
Layer Inputs: A € R™ %Y, m! inputs & n! = m!T! outputs

T 1
Pre-Activat®: z' = w! A7 Wl e RM X1

Activation: A! = fY(Z!) = f(WlTAl71 +wh e R"le element-wise

X=A0 Wt z! a Al (w2 22 o A2 Al 1 ZI a /\'
Wo Wi VVuL

layer 1 layer 2

Activation Functions

Thm. (No Activation) If f/(Z) = Z Vi (so activation = identity)
— AL kT w07 T x — ppTetal”

— A% = a linear function of X! One layer is enough

Example: (Activation Functions)

Step Function: step(z) = I{z > 0} (discontinuity = hard for BGD)
Rectified Linear Unit: ReLU(z) = max(0, z)

Sigmoid/Logistic Function: o(z) = - € [0,1] ~ probability

o
. . _ ez—ej:
Hyperbolic Tangent: tanh(z) = == € [-1,1]

21/2 e’

Softmax Funct®: softmax(z) = € [0,1)",VZ € R"
ezn/ Z?:l e?i
Prop: Softmax(z) ~ a prob. distribution ( (.") > components = 1)

' IRatue

%RCLU(Z) = step(z)
Lo(z)=0(2) (1-0())

< tanh(z) =

Prop:

4
(Fre2)?

“Note: ReLU: use in hidden layers

Sigmoid: binary classification output

Softmax: multi-class classification
output
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Error Back-Propagation

Note: We will frame it for SGD; For BGD do >, Vw L™

Idea: (Goal) Compute Vi L (NN (z; W), y), W := {W®, Wé”}f=1
Proposition (Final Layer) loss = L (NN (z; W),y) = L(AY, y)

Oloss 8zt 9AL dloss _ gLt Aloss\
OWL WL 9zL 9AL T ‘——\ 0ZL
mL xnl 1xnl
) J/‘*v/"'rZU Z"*H"'Ijl"‘ ‘ ”u/
Oloss -1 <aloss>T
Proposition (Any Layer =A
p (Any Layer) —o Y
b mlx1 "
mlxn 1xnl
Proposition (First Layer) Note: m!t! = n!
dloss  9A' 9z® 0A? dAL~Y ozl 9AT Oloss
0zl 9Z' 0A' 09z2 9zL—1  Q9AL-1 9zL QAL
nlx1 nlxnl m2xn2n2xn2 nL=1xnL—=1mLynl nLxnl nlx1
dloss/ 022
dloss/9AL
Note: (Dimensions) Recall that:
. 7‘21}‘\’5‘5 =nlx1
ozl _ iyl _ L ! oz! _ a1 a8zl _
* STt =W'=m"xn and T =A " oWy =11yt
!
. —g’;l =w!=nlxn!
Thm. (First Layer) We finally get:
dloss A DA? oAF! Wk A" dloss
0Z' 07" ~~ 022 ozZL-1  ~~ 97ZL 9AL
- m2><n2 d mLXTLL
nlx1 nlxnl n2xn? nl—=1lxnl—1 nlxnl nlx1

Thm. (Any Layer: Error Back-Propagation) We finally get:

Oloss HA Wit HAMT? W HAL  Bloss
9zl 9ZL e~ dZ+1 ~~ 9ZL 9AL
- N~ 1 b1 —— mLxnL N——r
nlx1 nlxnl nltlxnl+l nl xnl
X=A" W!| 7! a Al (w22 ol AL AT wt z!
4 Wa W
P — — P —
dloss dloss dloss dloss dloss. dloss dloss
Eyal QAT 0z QAT QAL ozt QAT

Note: Like a “blame propagat®”: how much is each module to blame?

e Forward: input — output

e Backward: input, output, dloss/doutput — 9dloss/dinput
e Weight Grad: input, dloss/doutput — 9loss/OW
Training

Idea: (Goal) SGD for a Feed-Forward NN

forl=1to L do
l 1
wi ~ N (0,2)

> Initialize W' matrix and Wé vector

>m! = # of input units

Wi, ~N(0,1)
for t =1 to T do )
i:Unif{l,...,n};Aoza:(’)

for I =1 to L do
1 1T p1- 1
zt=wh" A7+ wi
Al =gzl

loss = L(AL, y()

> Forward pass: get A

for /=L to1do

if | = L then > Error Back-Propagation
dloss __ QOloss
oAl AL
else
dloss _ dloss 9zlt!
aAl azl+1 oAl
Oloss __ Oloss oAl
ozl aAl azll
dloss _ dloss 8z! _ dloss gl—1 .
= = radien
ol o7l OWZL YT > Get Gradient
Oloss dloss 8Z Oloss .
2988 — £:083 = £.058 w.r.t Weights
owl 020 ow] EPL g
W' =w!—n(t) - ez > SGD Update
Wi = Wl — p(t) . 2loss
0 n(t) 8Wé

return {(Wl,Wol), .. .,(WL,WOL)}

Loss Functions & Activation Functions

Loss fL
Squared Linear

Hinge Linear

NLL Sigmoid
NLLM Softmax

Idea: (Loss Function Matching) Match Loss Function with
Activation Function of last layer!

Two-Class Classification & Log Likelihood

Idea: For Classification:
v Hinge loss: smoother than 0-1 loss (which is not good for BGD)
v/ NLL Loss: nice probabilistic interpretation + extends to multi-class

Assumptions Output layer: Activation function f! = sigmoid.
Note: So output a” € [0,1] ~ P (y(z) = 1), (where labels y € {0,1})

Idea: (Goal) We want to maximize:
P (NN assigns correct labels to all inputs)

= H?:l(a(i))y(i) (1 - a(i))lfy(i) Note: Maximize the log!

Def. (Negative Log Likelihood — NLL) Log Loss/Cross Entropy:
Lnee(@®, y®) = = (5@ logal + (1 = y) log(1 — o))
Objective: J(Dp; W) :=> 1 | Lycr(a™,y)

Multi-Class Classification & Log Likelihood

Assumptions K = # Classes
Labels: 1-hot vector y = [y1,...,yx]T with y, = 1 if ), € Class k
Output layer: Activation function f' = Softmax.

So Output a® = [a1,...,ar]? €[0,1]¥ ~ Prob Dist over all K classes

Idea: (Goal) We want to maximize:

i)y ()
P (NN assigns correct class to all inputs) = [T, HkK:I(a:))yk
Note: Maximize the log!

Def. (Negative Log Likelihood Multiclass — NLLM)
Lyrm(@®,y@) = - K 4@ 1ogal? o
Objective: J(Dp; W) :=3> 7" Lycoa(a®,y™)
Note: If k =2: yo=1—y; and az =1 —aq.

Neural Networks I1

Parameter Optimization

Idea: Take advantage of structure of Loss Function + Hypothesis
Class to improve optimization of weights.

Batches

Assumptions Objective: J(Dyp; W) = Z L (h(x(i); w), y(i))
i=1

Idea: Update Rules:

e BGD: W =W -0, VL (h(z”); W),y(“)

¢ SGD: W =W —n(t)VwL (h(a:(i); W),y(i>), i~ Unif{l,...,n}
o Size k Mini-Batch: W = W — n %, Vi L (h(m”); w), y<i>)

Note: BGD = too much computation if n large
SGD = if data has a lot of variability, n must be very small to average
moving over competing directions = slow

Def. (Mini-Batch of size k) Between BGD and SGD!

e Select k datapoints uniformly at random from data D,

e Update over the batch: W =W —n Zle VwL (h(z(i); w), y(i))
Note: k =n = BGD k=1 = SGD

Idea: Randomly shuffle data D,,, and cut into ~ n/k batches of size k.

n = length(D,,)
while not terminated do
Run
for i =1 to n/k do
Run

Adaptive Step-Size

Goal: Choose step size 1 to avoid exploding/vanishing gradients in
back-propagation due to multiplication

—> Use independent step-size parameter for each weight + update
based on local view of how the gradients updates have performed
—> Need different n in each layer & for each weight

Running Averages:

Idea: Estimate a weighted avg of a sequence of data

Input: Sequence ai,az,...,ar

Output: Sequence of running avg values Ag, A1, ...

Ap=0
A =y Ar—1 + (1 — ve)a
Example: (Moving Avg) Cst vz =v: Ar = Z?:o YTt (1 = y)ay

Also called Decaying Average!
Note: Later inputs a; have more effect on A; than early inputs

, Ar

Def. (Running Avg) { with v € (0,1)

Example: (Equal-Weighted Avg) v = %: Ar = TLH Z?:o at
Momentum:

Idea: Special case of running avg to describe strategies to compute n
Momentum = “avg” recent grad updates to avoid bounce back & forth
—> Smoothening of trajectory

Def. (Momentum) Start with Vo = 0:

o Def 1: Vi=~-Vici+n-VwJ(Wi_1)
T IWe=Wi1— Ve Defl <= Def2: usen:=17-(1—7)

M=~ -Mi_1+(1—7) VwJ(Wi_1)

Wiy =Wiq —7- M,

Note: Def 2: gradient update with step size 77 on Moving Avg of
gradients with param -~y

Prop: V; bigger in dims of Vy that consistently have same sign
Note: Need to set 2 extra params: n & v — usually v ~ 0.9
Prop: v small = no averaging/usual no-momentum method

o Def 2:
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Adadelta:

Idea: BGD/SGD can be slow if J(W) has a plateau (flat region)
Goal: Pick large n in flat parts; small n in steep parts
—> Care about magnitude of gradient
Def. (Adadelta) In each layer of the NN:
gt.j = VwJ(Wi-1);
Gij=7v-Gio1,;+ (1 —7)- g?)j — large when steep/small
Wi =Weo1,; — ﬁ " Gt,j
G¢,; = Moving Avg of square (ignore sign) of grad’s jth component

Adam:
Idea: Today’s default method to manage step sizes n in NN
— Combine momentum + Adadelta ideas!

— use € to avoid blow-ups

Warning: Adam might actually violate SGD convergence conditions!
Paper: jarxiv.org/abs/1705.08292
Def. (Adam)
Step 1: Moving Avg of Grad & (Grad)? ~ mean/var of weight j’s grad
mo =vg =0
g5 = VwJ(Wi_1);
me ;= B1-mi_1,; +(1—B1)-ge,j
v¢,j = Bz -vi_1,; + (1 — Ba) - gf,j
Step 2: Bias-Correction for initializing mo = vo =0
My = 71,131 Sy

Ot = j "Vt

Step 3: Gradient update Wy ; = Wi_1,; — 7 - \/ﬁfmd
Suggestion: Use By = 0.9, By = 0.999, and ¢ = 10~ %

Note: Adam is not very sensitive to (B1, Bz, ) parameters
Implement: Store matrix for (m!,v!, g, (¢!)?) in each layer of NN.

Regularization

Recap: Optimize loss on training data = overfitting possible
Large Deep NN: a lot of data & params ~ actually not major issue
Still want to make sure that minimizing training loss generalizes well

Methods For Ridge Regression

‘Weight Decay:

Goal: Penalize the norm of all the weights ~ Ridge Regression
Def. (Weight Decay) Objective:

JW) =0, L(NNEO; W), yD) + IXWI2 , A e (0,1)
Proposition (Weight Updates) Using weight decay: (n € (0, 1))
We=Wi_1(1— M) —n Vwl (NN(w“); Wi_1), y“))

C) We=W S Wisa) s y D) + AW
Note: “Decay” W;_1 by a factor of (1 — An) + take a gradient step

n- 7\—\‘ L <A\ N(z'*

Early Stopping: (Equivalent to Weight Decay)
Def. (Epoch) One pass through training (or could be more)

Def. (Early Stopping) At each epoch: evaluate loss of current W on
a validation set. == Stop when error starts to increase systematically
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Noise Addition [Bishop]:(Equivalent to Weight Decay)
Def. (Noise Addition) Perturb the = values of training data:
Add small amount of N (0,02 ) noise before each gradient computation

err
Note: Overfitting Y\, as training data perturbed on each training step

Dropout

when flat Idea: Instead of perturbing data each time: perturb the network!

Note: Good for Deep Learning + robust to data perturbation

Def. (Dropout) During training phase, for each training example:
For each unit — randomly pick aé. ~ Ber(1 —p) = a; € {0,1}

With prob p: aé. = 0 = no contrib to output & no grad update for unit
After training: X all weights by p = achieve same avg activation levels

Proposition (Dropout Implementation) During Training,

1
e On each Forward Pass: a' = f(2') * d', with d' € {Ber(1 —p)}"
e Backwards Pass: no further changes (depends on at anyway)
—— Common to set p = 0.5 Note: * = componentwise X

Batch Normalization

Ref. larxiv.org/abs/1502.03167
Idea: (Covariate Shift) Input: X ~Px = Output A ~Px w
But A = input to 2% layer of NN

—> Distrib of input changes each time we update weights W
—> Standardize input values for each mini-batch!

Note: Batch Normalization has regularization effect!
Each mini-batch of data is mildly perturbed: overfitting
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Def. (Batch Norm) Add Batch-Norm Unit before activation module
l - i 1

ZL e RV XE _ ZL e RV XE gl e XK (K = batch size)

Forward Pass: For each feature value i € {1,..., nl},

L
= pl e R X!

!
= ol e R X!

(GY & B! allows for flexibility)

oL

back-propagation
Backwards Pass: Given 2L, want q 92 (BL P lp & )
0z @&m (W* grad updates)

1
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Thm. (Back-Propagation) Given z)BZLl : (using 0;; = I{t = j})
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(*.") 3 dependencies across the batch, not across the unit outputs:
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Recurrent Neural Networks

RINN Model
Sequence-to-Sequence RNN
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