By Zied Ben Chaouch

6.036 Machine Learning

Last Updated April 16, 2019

Introduction

Machine Learning

Goal: make decisions or predictions based on data.
Problems to solve: Estimation + Generalization

Problem Characterization:

e Problem Class: Nature of training data (Supervised?)
e Assumptions: Source of data? Form of solution?

e Evaluation Criteria: Prediction goal? Performance measure?
Solution Characterization:

e Model Type: Intermediate model needed? Model used?
e Model Class: Parametric class of model needed?

e Algorithm: Computational process for making predictions

Problem Class

Superv. Learning: Given inputs z(® € R? or discrete + outputs y(i)
o Classification: y("’) takes a finite set of values
o Regression: y(i) c RF

Unsuperv. Learning: Given inputs z(® e r? only

e Density Estimation: {z(i)};;l id P(X), find P for predictions
e Clustering: Partition samples into similar groups

e Dimensionality Reduction: e.g., Princip Component Analysis
Reinforc. Learning: Learn policy 7 : ¢ — y maximizing reward
e Agent observes current state z(®

e Selects action y(o) & gets reward r(© (ww), y(o))
e Environment generates new state = under P (X\z(o), y(o))

Sequential Learning: (Supervised) Learn mapping from input seq
xg, ..., Ty to output seq yo, ..., Ym-

Represent Map as state machine with functions f & g:

f: compute next hidden internal state given input

g: compute output given current hidden state

Other Settings:

e Semi-Supervised Learn: For some x(”, missing y(i')
i

e Active Learn.: Minimize cost of obtaining labels y()

e Transfer/Meta Learn: Multip tasks, data€related distribs

Assumptions
Data: IID or Markov Chain or adversarial

True Model: Can be described by a set of hypotheses

Evaluation Criteria

Loss Function: L(g,a) between guess g & actual a

0-1 Loss: L(g,a) =1{g = a}

Squared Loss: L(g,a) = (g — a)?

Linear Loss: L(g,a) = |g — a

1 g=1&a=0

10 g=0&a=1

0 g=a=0,g=a=1

Asymetric Loss: L(g,a) =

Model Type

No Model: Predict directly from training data without construction
of any intermediate model. ex: k-Nearest Neighbor method

With Model: Fit model to training data (get prediction rule)+ use
model to make predictions
Prediction Rule: Hypothesis y = h(z;0)

Training Error: £,(h) = 237" L (h(m(i); 0), y(i))

n i=
’
n+n

Testing Error: £(h) = ﬁ i1 L (h(x(i); 0), y(i))
Model Class M /Parameter Fitting
Model Class: M, set of possible models typically parametrized by

vector of parameters © = (60, 0)
ex: Linear Function: h(z;0,00) = 0Tz + 0

Algorithm

What sequence of computational instructions should we run in order
to find a good model from our class?

ex: Least-Squares Minimization Algorithm: Minimize training error
£,(0) to determine © for h(z; 0, 0p)

Linear Classifiers

Classification
Def. (Binary Classifier) Map = € R? to y € {—1,+1}
Def. (Feature) ¢ :R?% — RY: work with ¢(z) instead of z.
Def. (Training Data) D, := {(m<1),y(1)), oo (2 y(”))}
Input (Y € R4*Y; Output y € {—1, +1}.
Def. (Hypothesis Class) H := {classifiers h : R* — {—1,+1}}
Def. (Hypothesis) h:z—y
Def. (Learning Algorithm) Procedure mapping D,, — h € H
Def. (Training Error) Given training dataset D,,:
En(h) = + X0 Hh(zW) #y D}
Def. (Testing Error) Given testing dataset D,,/:

’ . .
E(h) = 5 3 Ha@®) # 4}

Linear Classifier

Def. (Sign Function) sgn(z) € {+1,0,—1}, Vz € R

Def. (Linear Classifier) Hypothesis class given by:

H = {h(m;e, 0p) = sgn <0T1: + 00) 10 e R g, €]R}

Def. (Hyperplane Pg induced by ®) 6Tz 46y =0 = 6 L Pe
Side of 8 — @; Side of (—0) — ©; On Pg — ©.

x; intercept: x; = *90/91'

Def. (Linear Separable Data) Training dataset D,, is lin. separable
< 3(0,00) s.t. yP (0T +60) >0Vi=1...n

— h(=zD;0,00) =y'Y —= E,(h) =0

Learning Alg. for the Linear Classifier

for j =1 to k do
Randomly sample (0(j), Géj)) from (RY, R)

it = argminjeq1,... k) En (Q(j), Qéj))

return (9(j*), Géj*))
Note: k£ = &, \,
Evaluating a Learning Algorithm
Idea: (To Evaluate the Performance of a)
Classifier h € H: Measure test error &, (h)
Learning Algorithm: Hard! Ex: try Cross-Validation
s hi

e Compare the hi’s performance on a new testing set

e Train on other datasets: get hy,...

Def. (Cross-Validation) k-fold Cross Validation for evaluation

Divide D into k chunks: Dy, ..
for i =1 to k do
Train h; on D\ D;
Compute test error &£;(h;) on non-D; data
return 4 Sk Ei(hi)
Note: Cross-Validation evaluates the algorithm that produces the
hypotheses h, but does NOT evaluate the hypotheses h produced.

., Dy of similar size

The Perceptron

Algorithm
Def. (Perceptron — Rosenblatt (1962))

Training Dataset: D, = {(w<i),y(i)) s e REXT 4 ¢ {il}}n
i=1

Binary Classifier: h(z;0,00);

Iterations:

Parameters: 6 € RYX!, 9, € R

T steps.

90:0,and9:[0 0
for t =1 to 7 do
for i =1 to n do
if ¥y (672 4 6,) < 0 then
0=0+ y(i)w(i)
o = 0o + y™
return (0, 6o)
Note: If alg does not enter IF loop for n iterations: &, (h) = 0!
Prop: If data is linearly separable, Perceptron will find it.

Offset

Thm. (Dim. Increase)
Given 60y, 0 = [6’1

Let Opew = [91 ... B4 GO}T, and Tnew = [zl .. xg
= 0L Tnew =07 -z + 0o

Note: Perceptron with offset < Perceptron though origin in dim d 4 1

0]”

Gd}T,anda:: [x1 zd}T:

11"

0= [0 0o ...
fort =1 to 7 do
for i =1 to n do
if ¥ (6T2(M) <0 then
0=104+ y(i)w(i)
return 60

0]”

By Zied Ben Chaouch

Theory of the Perceptron

Proposition (Distance of a Point x) to the hyperplane (6, 6o):
Dist(g,0.) (z) = “9” (9 T + 90)

Def. (Margin of a Labeled Point (x,y)) w.r.t hyperplane (6, 60):
Y0,00) (T, Y) =y - ﬁ (GT:U + 00) Prop: y(z,y) >0 <= zis
classified correctly as y by the linear classifier (hyperplane)

Def. (Margin of a Dataset D,,) w.r.t hyperplane (0, 6p):
Y(6,60)(DPn) = min; y® . ”9” <9T @ +90) Prop: v(D,) >0 <= all

pts in D,, are classified correctly by the linear classifier (hyperplane)
Note: If v(D,,) > 0, v represents the dist from hyperpln to closest pt.

Thm. (Perceptron-Through-Origin Convergence Thm) If:

(a) 36" € RY, 3y > 0 sty - H

(e*T O 90) >y Vi=1l.n

() [|z?| < RVi=1...n (all pts have bdd size)
Then: Perceptron-Through-Origin makes at most (R/~v)? mistakes.

Feature Representation

Margin Maximization

Gradient Descent

Feature Transformation
_[- +
Def. (X-OR Dataset) D = Lo

Proposition (Transform X-OR) ¢(z) = [z zz]T
— X-OR is now linearly separable in 2D.

Note: This is the basis for Kernel Methods

Polynomial Basis

Method: get ¢ systematically (domain independent)
Idea: Use k'"-order basis:

2 .3 2
¢:[l,z, 2%, z°] = [1,21,...,2], 2122, ...,T1T223, ...
General:

ke k k
¢:[lz,...,z" — [z11z22 . zkd]
{k1+kot...+kg=k|0<n; <k}

In k"-order basis, we have (k ;_dfl) terms of order k' < k.

k'+d—1)

= We have a basis of size: lez/:o ("o

Discrete Features

Method: get ¢ deliberately with our domain in mind (can be related
to semantics)
Idea: (Encoding Strategy) Assume data takes one of k discr values:

Numeric: Standardize them! (speeds up learning algo)
é(z) = (x — 2)/o with Z = avg(z?) & o = std(z(?))

Numeric with Breakpoints: Break into bins & use one-hot
ex: Age S 21 = (Age < 21)&(Age > 21)

Thermometer Code: Number but no natural ordering:
0<j<k = [1,1,4..,1(7),07 ..., 0] (vector of length k)

Factored Code: Value can be split into two factors: Treat factors
separately ex: Car — (Brand; Model)

One-Hot Code: No natural numeric/ordering/factor structure:
0<j<k = [0,0,...,0,19,0,...,0] (vector of length k)
Binary Code: Bad idea! need to teach your algo to decode input...

Text: Bag-Of-Words (BOW) model:
d = # words in our vocab: vector € {0,1}% with 1) & word j occurs

ML as Optimization

Idea: Frame ML problem into optimization problem
+ use standard algorithms/implementations to get hypothesis h(z; ©)

Def. (Objective Function) J(©;D,): Params © = (0, 6,), Data D,,
Typically: J(©;D,) = 257 | L (h(m“);@),y(“) +A-R(6)
—> Choose ©" := argming J(©; D,,)

Regularization

Idea: Want to perform well on un-seen data (generalization): avoid
overfitting!

Def. (Regularizer) Typically: R(©) = ||© — Opior||?

ex: No prior knowledge? = Regularize towards zero R(©) = [|©|?

Maximize the Margin
Assumptions Classification setting, 0-1 loss
Idea: Want to maximize the margin of dataset (regularization!)
(672 + 60)
Def. (Margin Maximization) J(©,D,) =

— O" = argmine J(©,D,)
— ©* = argmaxe min; y(zV,

Recall: y(g,9,)(Dn) = min; y* - ToT

— min; v(z,y, ©)

y?,0)
Warning: This form of the objective can be tricky to optimize as it is

only sensitive to a single data point at a time
— gradient methods won’t work very well

Idea: Use a target v,y & try to find separator s.t.
(@) (@D, yD) > yep
(b) Vrey is big

Def. (Hinge Loss) Ly (v) = max(l —wv,0) = {é - 1; v i 1
9 v -
1— 2= ify <
Example: Ly () = Tref VS et
Tref 0, if v > Yres

+
loss =0

_—

incorrect

Yref
correct but margin|< v,

Def. (Objective Function) To maximize the margin, minimize:

(1) () o 2
KO 7re) = & Siy I (22) 0 (47)
1

= 250 L (5per v - (6729 +00)) + 1 (Tef)z

Support Vector Machines (SVM)
Idea: The scalc of 6 does not affect the classifier (separator) obtained:

= Pick ||0H =

EON loss = 0. .

loss =0

YrefN

— Note: large magin < small 0
'vr ef

Def. (SVM Objective Function) Want to minimize:
J(0,60) = 2 0y Lo (v - (072D +60)) + A+ [10]12
Note: A - 0 = No regularization ; XX —o00 = 6 —0;
Lin. Sep. Data: very small A\ = 3 at least 1 pt on the margin

7($(i))y(i)) = Ypes = ﬁ — y(z‘> . (eTw(i) +90) =1

Idea: Goal: minimize the f(©) = J(D,,; ©) surface
e Start at an arbitrary point;
e Take a small step in direction of steepest descent;

e Take more small step in the new directions of steepest descent

One Dimension
Parameter: © € R (1-dimensionall) — Initial Value: Ojniy € R
Step Size: n € R

Function to Minimize: f(D,;®) (so f:R — R)

Derivative of the Function: f'(D,;0)

Accuracy Parameter: ¢ € Ry
0 =0, ; t=0
while |f'(©®)| > ¢ do

t=t+4+1

—ptt-1 _ nf (Dn; 9(171)>
return ©(*)
Note: Other ways to terminate: cap # of iterations ¢, or stop when
[©® — et~V < ¢ or when [f(©1)) — f(OFD)| < e.
Note: Small n = slow convergence; Big n = oscillations or divergence
Thm. (Convex Optimization) If J(©) is convex:
Ve > 0,3n s.t. 1D-GD converges within € of the optimal ©.
Note: Non-convex J: may 3 local minimal

Multiple Dimensions
© € RY*! _ Initial Value: Ojni € R
Step Size: n € R

Parameter:
Function to Minimize: f(D,;0) (so f:R*T! - R)

. . of af 1T
Gradient of the Function: Vg f(D,;0) = [W s m]

Accuracy Parameter: ¢ € R
O =0 ; t=0
while |f(©@®) — f(©¢~1)| > ¢ do

t=t+1
o) — g(t-1)

return)
Application to SVM Objective
Lp(v) =max(l —v,0)=1—v-I{v < 1}
L;L('u) =-1-I{v < 1}

— Ve f(Dn; ©7Y)

Hinge Loss:
Derivative of Hinge Loss:

Objective: J(Dn,G 0p) €ER
J(Dn;0,00) = — ZL (v - @72 +00)) + S AlI0)1*

z—l
f-Gradient: Vy.J(D,;0,00) € RIT?

1 X) .))

VoI (Dns6,00) = = > L, (31 - (672 +60)) s + 20
nis

0o-Gradient: Vg,J(Dn;0,600) = 55-J(Dn;6,600) € R

1 - 7 7
Voo I (Dni0.60) = — > L (v - (072 + 60)) 4
i=1

By Zied Ben Chaouch

0 = Oiic 9((30> =60t ; t=0
while [J(6®, 657y — 7(6¢=1,6{!" V)| > ¢ do
t=t+1
_ 1 & ; _ ; _ ;
eét) — eéf 1)+ n- -~ ZH {y(’t) . (G(t T (9 + eéf 1)) < 1} y(’t)
i=1
g(t) 9(75*1)_,'_

- *Z {0 (D720 ol D) <1}y @2 4 aptD

return (0“) G(t))
Note: A\ does not appear in 6y updates: don’t regularize the offset!
only the slope needs to be regularized (made simpler). Offset & scaling

Stochastic Gradient Descent

Idea: If gradient is in form of a sum: f(Dn;0) = > ", fi (DP;0)
Don’t take 1 small step in the direction of the gradient

— randomly select 1 term in sum and take tiny step in that direction.
You will move in the direction of the gradient on average.

0 = Oy

fort =1to T do
Randomly get i € {1,...,n} = Focus on (z?,
0 =o' —n(t)- Ve fi(D; 007 1)

return ©®

y") e DY

Thm (Convex Optlmlzatlon) If J(©) is convex:

Zn(t oo & Zn(t
t=1

Note: For SGD, n must decrease! Ex: n ~ 1/t

Note: e If f non-convex with many local optima: BGD gets trapped!
— taking samples from the gradient at some point © can make you
bounce off of local optima.

e May not want to optimize f perfectly (overfitting of training set)
= SGD can get lower test error (but probably not lower training
error) than BGD.

< oo = SGD converges a.s. to optimal ©

Regression

Data: D, = {(z),y (=™, y €R.

Hypothesis: h: R? — R; Linear: h(z;0,00)

My, ... y(™}, with (9 e R4X?,

=0Tz + 6o
Non-Linear Feature Transformation ¢: h(z;0,600) = 67 ¢(x) + 6o

Loss Function: Squared-Error L(guess — actual)?
) N 2
Objective: Mean SE J(0,00) = % DM (QT;E(U + 60 — y(@))

Solution: (0*,6]) = argming g, J (6, 6o)

OLS Analytical Solution
Def. (Ordinary Least Squares) Linear hypothesis + MSE
Assumptions z® augmented with row of 1’s = can ignore 0.
X e RV X = [z z™], 20 = [935) . ~zf;')]T € Rix1
Y = [y(l) L y(n)} c RIx™

W=XxTeR"™ and T=Y" € R"*!

Thm. (OLS Solution)

e Objective: Jors(0) = %(WQ —
e Gradient: VgJoLs = 2W7T (W6 —
e Solution: 0%, = (WTW)='wTT

T(We —T)
™0
=(xxT)=1xyT

e Solution: 034, =
Note: (WTW + nAl, xn) invertible when A > 0

o Objective: Jriage(0) = £ X0, (672 + 00 —

o Gradients: Vg JRidge =

Regularization
Def. (Ridge Regression)

. . 2
o Objective: Jriage(0) = L 7 (eTzW + 00 — y“)) + A[I0]12

Warning: In what follows: 0y included in 6!

o Gradient: Vo Jriage = 2W7T (W0 — T) + 230 = 0

(WTW 4+ nAlgxq) *WTT

Def. (Bias-Variance Tradeoff) Hypoth h € H contributes to errors
on test data by:

e Structural Err: (Bias) Ah € H describing data well (H too simple)
e Estimation Err: (Variance) Not enough data to pick good h € H
Note: Regularization: A 7 = Bias ' & Variance Y\

Optimize via Gradient Descent

Idea: Closed form solution ~ O(d®) to invert W7 W: too long!
Def. (Ridge Gradient Descent/SGD)

AN 2
v)+ A0
25 (OT:n(i) + 0o — y<i)) z() 4+ 2x0
2y (9T$<i> + 60 — yu))

Thm. (Convex Optimization) OLS & Ridge are convex objectives!

—> unique minimum & guaranteed BGD convergence to optimum for
small enough step size n

Neural Networks I

_ _
Voo JRidge = T%dege =

View 1: NN = Application of SGD for classification/regression with
a potentially very rich hypothesis class H

View 2: NN = Brain-inspired network of neuron-like computing
elements that learn distributed representations

View 3: NN = Method to build applications that make predictions
with huge data in very complex domains

Basic Element

Def. (Neuron/Unit/Node:)

pre-activation

X1 output
wi | |
(D)=
Win
Xm Wo -
] activation
input
Input: z € R™ Output: a = f(z) €R
Weights: w € R™ Offset: wg € R
Pre-Activation: z = w7z 4w = Z;” L wj ac) 4w
Activation Function: a = f(z) = f(wTz® + w)

Def. (Objective Function) Note: Use in BGD/SGD!
J(Dpw,wo) = 7, L (NN(@ 2w, wo) W)
NN(-) = NN output ; L(guess, actual) = Loss Function

Note: Linear Classifiers with Hinge Loss + Linear Regressions with
Quadratic loss = 1 neuron with f(z) =«

Example: 1 Neuron, f(z) =e* & L(g, a)=(g— a)2:
J(w,wo) =377, (exp (Zm 1 wJac)+ wo) - (i))2
Vwd =230, m(”exp (w (M 4 wo) (exp (w 20 4 wo) — y(i))

T @ + wo) (exp (w (9 + wo)

_ y<i>)

Vwgd =237 exp (w

Networks

Def. (NN) Input =z € R™; Output = a € R" (n Output Units)
Def. (Feed-Forward NN) Acyclic (neuron input L of own output)
+ Data flows one way: inputs — outputs

+ NN(-) = composition of each neuron’s function

Single Layer: Linear Hypothesis

Def. (Layer) Set of non-connected units with:

Input: z € R™ ; Output/Activation: a € R"

Fully Connected: Same inputs to each layer :v() . z(i)
Layer’s Weight Matrix: W! € R™*" Oﬂ"set Vect Wl c R*X1
Layer Inputs: X € RrR™ X1 Pre-Activat®: =wTx + Wy € RX1
Activation: A = f(Z) = f(WTX + W) € R"Xl applied element-wise

Note: Single Layer <= Linear Hypotheses!

|
layer 1

input output
Multiple Layers
Def. (Layers) Set of non-connected units with:
Uynl l
Layer’s Weight Matrix: W! € R™ X® Offset: Wé e R™ X!
1
Layer Inputs: A € R™ %Y, m! inputs & n! = m!T! outputs

T 1
Pre-Activat®: z' = w! A7 Wl e RM X1

Activation: A! = fY(Z!) = f(WlTAl71 +wh e R"le element-wise

X=A0 Wt z! a Al (w2 22 o A2 Al 1 ZI a /\'
Wo Wi VVuL

layer 1 layer 2

Activation Functions

Thm. (No Activation) If f/(Z) = Z Vi (so activation = identity)
— AL kT w07 T x — ppTetal”

— A% = a linear function of X! One layer is enough

Example: (Activation Functions)

Step Function: step(z) = I{z > 0} (discontinuity = hard for BGD)
Rectified Linear Unit: ReLU(z) = max(0, z)

Sigmoid/Logistic Function: o(z) = - € [0,1] ~ probability

o
. . _ ez—ej:
Hyperbolic Tangent: tanh(z) = == € [-1,1]

21/2 e’

Softmax Funct®: softmax(z) = € [0,1)",VZ € R"
ezn/ Z?:l e?i
Prop: Softmax(z) ~ a prob. distribution ((.") > components = 1)

' IRatue

%RCLU(Z) = step(z)
Lo(z)=0(2) (1-0())

< tanh(z) =

Prop:

4
(Fre2)?

“Note: ReLU: use in hidden layers

Sigmoid: binary classification output

Softmax: multi-class classification
output

By Zied Ben Chaouch

Error Back-Propagation

Note: We will frame it for SGD; For BGD do >, Vw L™

Idea: (Goal) Compute Vi L (NN (z; W), y), W := {W®, Wé”}f=1
Proposition (Final Layer) loss = L (NN (z; W),y) = L(AY, y)

Oloss 8zt 9AL dloss _ gLt Aloss\
OWL WL 9zL 9AL T ‘——\ 0ZL
mL xnl 1xnl
) J/‘*v/"'rZU Z"*H"'Ijl"‘ ‘ ”u/
Oloss -1 <aloss>T
Proposition (Any Layer =A
p (Any Layer) —o Y
b mlx1 "
mlxn 1xnl
Proposition (First Layer) Note: m!t! = n!
dloss 9A' 9z® 0A? dAL~Y ozl 9AT Oloss
0zl 9Z' 0A' 09z2 9zL—1 Q9AL-1 9zL QAL
nlx1 nlxnl m2xn2n2xn2 nL=1xnL—=1mLynl nLxnl nlx1
dloss/ 022
dloss/9AL
Note: (Dimensions) Recall that:
. 7‘21}‘\’5‘5 =nlx1
ozl _ iyl _ L ! oz! _ a1 a8zl _
* STt =W'=m"xn and T =A " oWy =11yt
!
. —g’;l =w!=nlxn!
Thm. (First Layer) We finally get:
dloss A DA? oAF! Wk A" dloss
0Z' 07" ~~ 022 ozZL-1 ~~ 97ZL 9AL
- m2><n2 d mLXTLL
nlx1 nlxnl n2xn? nl—=1lxnl—1 nlxnl nlx1

Thm. (Any Layer: Error Back-Propagation) We finally get:

Oloss HA Wit HAMT? W HAL Bloss
9zl 9ZL e~ dZ+1 ~~ 9ZL 9AL
- N~ 1 b1 —— mLxnL N——r
nlx1 nlxnl nltlxnl+l nl xnl
X=A" W!| 7! a Al (w22 ol AL AT wt z!
4 Wa W
P — — P —
dloss dloss dloss dloss dloss. dloss dloss
Eyal QAT 0z QAT QAL ozt QAT

Note: Like a “blame propagat®”: how much is each module to blame?

e Forward: input — output

e Backward: input, output, dloss/doutput — 9dloss/dinput
e Weight Grad: input, dloss/doutput — 9loss/OW
Training

Idea: (Goal) SGD for a Feed-Forward NN

forl=1to L do
l 1
wi ~ N (0,2)

> Initialize W' matrix and Wé vector

>m! = # of input units

Wi, ~N(0,1)
for t =1 to T do)
i:Unif{l,...,n};Aoza:(’)

for I =1 to L do
1 1T p1- 1
zt=wh" A7+ wi
Al =gzl

loss = L(AL, y()

> Forward pass: get A

for /=L to1do

if | = L then > Error Back-Propagation
dloss __ QOloss
oAl AL
else
dloss _ dloss 9zlt!
aAl azl+1 oAl
Oloss __ Oloss oAl
ozl aAl azll
dloss _ dloss 8z! _ dloss gl—1 .
= = radien
ol o7l OWZL YT > Get Gradient
Oloss dloss 8Z Oloss .
2988 — £:083 = £.058 w.r.t Weights
owl 020 ow] EPL g
W' =w!—n(t) - ez > SGD Update
Wi = Wl — p(t) . 2loss
0 n(t) 8Wé

return {(Wl,Wol), .. .,(WL,WOL)}

Loss Functions & Activation Functions

Loss fL
Squared Linear

Hinge Linear

NLL Sigmoid
NLLM Softmax

Idea: (Loss Function Matching) Match Loss Function with
Activation Function of last layer!

Two-Class Classification & Log Likelihood

Idea: For Classification:
v Hinge loss: smoother than 0-1 loss (which is not good for BGD)
v/ NLL Loss: nice probabilistic interpretation + extends to multi-class

Assumptions Output layer: Activation function f! = sigmoid.
Note: So output a” € [0,1] ~ P (y(z) = 1), (where labels y € {0,1})

Idea: (Goal) We want to maximize:
P (NN assigns correct labels to all inputs)

= H?:l(a(i))y(i) (1 - a(i))lfy(i) Note: Maximize the log!

Def. (Negative Log Likelihood — NLL) Log Loss/Cross Entropy:
Lnee(@®, y®) = = (5@ logal + (1 = y) log(1 — o))
Objective: J(Dp; W) :=> 1 | Lycr(a™,y)

Multi-Class Classification & Log Likelihood

Assumptions K = # Classes
Labels: 1-hot vector y = [y1,...,yx]T with y, = 1 if), € Class k
Output layer: Activation function f' = Softmax.

So Output a® = [a1,...,ar]? €[0,1]¥ ~ Prob Dist over all K classes

Idea: (Goal) We want to maximize:

i)y ()
P (NN assigns correct class to all inputs) = [T, HkK:I(a:))yk
Note: Maximize the log!

Def. (Negative Log Likelihood Multiclass — NLLM)
Lyrm(@®,y@) = - K 4@ 1ogal? o
Objective: J(Dp; W) :=3> 7" Lycoa(a®,y™)
Note: If k =2: yo=1—y; and az =1 —aq.

Neural Networks I1

Parameter Optimization

Idea: Take advantage of structure of Loss Function + Hypothesis
Class to improve optimization of weights.

Batches

Assumptions Objective: J(Dyp; W) = Z L (h(x(i); w), y(i))
i=1

Idea: Update Rules:

e BGD: W =W -0, VL (h(z”); W),y(“)

¢ SGD: W =W —n(t)VwL (h(a:(i); W),y(i>), i~ Unif{l,...,n}
o Size k Mini-Batch: W = W — n %, Vi L (h(m”); w), y<i>)

Note: BGD = too much computation if n large
SGD = if data has a lot of variability, n must be very small to average
moving over competing directions = slow

Def. (Mini-Batch of size k) Between BGD and SGD!

e Select k datapoints uniformly at random from data D,

e Update over the batch: W =W —n Zle VwL (h(z(i); w), y(i))
Note: k =n = BGD k=1 = SGD

Idea: Randomly shuffle data D,,, and cut into ~ n/k batches of size k.

n = length(D,,)
while not terminated do
Run
for i =1 to n/k do
Run

Adaptive Step-Size

Goal: Choose step size 1 to avoid exploding/vanishing gradients in
back-propagation due to multiplication

—> Use independent step-size parameter for each weight + update
based on local view of how the gradients updates have performed
—> Need different n in each layer & for each weight

Running Averages:

Idea: Estimate a weighted avg of a sequence of data

Input: Sequence ai,az,...,ar

Output: Sequence of running avg values Ag, A1, ...

Ap=0
A =y Ar—1 + (1 — ve)a
Example: (Moving Avg) Cst vz =v: Ar = Z?:o YTt (1 = y)ay

Also called Decaying Average!
Note: Later inputs a; have more effect on A; than early inputs

, Ar

Def. (Running Avg) { with v € (0,1)

Example: (Equal-Weighted Avg) v = %: Ar = TLH Z?:o at
Momentum:

Idea: Special case of running avg to describe strategies to compute n
Momentum = “avg” recent grad updates to avoid bounce back & forth
—> Smoothening of trajectory

Def. (Momentum) Start with Vo = 0:

o Def 1: Vi=~-Vici+n-VwJ(Wi_1)
T IWe=Wi1— Ve Defl <= Def2: usen:=17-(1—7)

M=~ -Mi_1+(1—7) VwJ(Wi_1)

Wiy =Wiq —7- M,

Note: Def 2: gradient update with step size 77 on Moving Avg of
gradients with param -~y

Prop: V; bigger in dims of Vy that consistently have same sign
Note: Need to set 2 extra params: n & v — usually v ~ 0.9
Prop: v small = no averaging/usual no-momentum method

o Def 2:

/" 1step P P _
/ Update . / ~ ~
/ / s
(.
(\ Gradient

\ \ \
\ \| Direction _

_~ Gradient
/" Direction

/cmmem//
{_ Direction,

\\ o ~
Momentum
Adadelta:

Idea: BGD/SGD can be slow if J(W) has a plateau (flat region)
Goal: Pick large n in flat parts; small n in steep parts
—> Care about magnitude of gradient
Def. (Adadelta) In each layer of the NN:
gt.j = VwJ(Wi-1);
Gij=7v-Gio1,;+ (1 —7)- g?)j — large when steep/small
Wi =Weo1,; — ﬁ " Gt,j
G¢,; = Moving Avg of square (ignore sign) of grad’s jth component

Adam:
Idea: Today’s default method to manage step sizes n in NN
— Combine momentum + Adadelta ideas!

— use € to avoid blow-ups

Warning: Adam might actually violate SGD convergence conditions!
Paper: jarxiv.org/abs/1705.08292
Def. (Adam)
Step 1: Moving Avg of Grad & (Grad)? ~ mean/var of weight j’s grad
mo =vg =0
g5 = VwJ(Wi_1);
me ;= B1-mi_1,; +(1—B1)-ge,j
v¢,j = Bz -vi_1,; + (1 — Ba) - gf,j
Step 2: Bias-Correction for initializing mo = vo =0
My = 71,131 Sy

Ot = j "Vt

Step 3: Gradient update Wy ; = Wi_1,; — 7 - \/ﬁfmd
Suggestion: Use By = 0.9, By = 0.999, and ¢ = 10~ %

Note: Adam is not very sensitive to (B1, Bz,) parameters
Implement: Store matrix for (m!,v!, g, (¢!)?) in each layer of NN.

Regularization

Recap: Optimize loss on training data = overfitting possible
Large Deep NN: a lot of data & params ~ actually not major issue
Still want to make sure that minimizing training loss generalizes well

Methods For Ridge Regression

‘Weight Decay:

Goal: Penalize the norm of all the weights ~ Ridge Regression
Def. (Weight Decay) Objective:

JW) =0, L(NNEO; W), yD) + IXWI2 , A e (0,1)
Proposition (Weight Updates) Using weight decay: (n € (0, 1))
We=Wi_1(1— M) —n Vwl (NN(w“); Wi_1), y“))

C) We=W S Wisa) s y D) + AW
Note: “Decay” W;_1 by a factor of (1 — An) + take a gradient step

n- 7\—\‘ L <A\ N(z'*

Early Stopping: (Equivalent to Weight Decay)
Def. (Epoch) One pass through training (or could be more)

Def. (Early Stopping) At each epoch: evaluate loss of current W on
a validation set. == Stop when error starts to increase systematically

freee S

Econr

Teasns®

vals 4.

ove F}f Rt
Sk’f'. ¢

Fam

Early Stopping

» qpud\
\
Noise Addition [Bishop]:(Equivalent to Weight Decay)
Def. (Noise Addition) Perturb the = values of training data:
Add small amount of N (0,02) noise before each gradient computation

err
Note: Overfitting Y\, as training data perturbed on each training step

Dropout

when flat Idea: Instead of perturbing data each time: perturb the network!

Note: Good for Deep Learning + robust to data perturbation

Def. (Dropout) During training phase, for each training example:
For each unit — randomly pick aé. ~ Ber(1 —p) = a; € {0,1}

With prob p: aé. = 0 = no contrib to output & no grad update for unit
After training: X all weights by p = achieve same avg activation levels

Proposition (Dropout Implementation) During Training,

1
e On each Forward Pass: a' = f(2') * d', with d' € {Ber(1 —p)}"
e Backwards Pass: no further changes (depends on at anyway)
—— Common to set p = 0.5 Note: * = componentwise X

Batch Normalization

Ref. larxiv.org/abs/1502.03167
Idea: (Covariate Shift) Input: X ~Px = Output A ~Px w
But A = input to 2% layer of NN

—> Distrib of input changes each time we update weights W
—> Standardize input values for each mini-batch!

Note: Batch Normalization has regularization effect!
Each mini-batch of data is mildly perturbed: overfitting

3 3 4 2% ar At
_,X\ i Nora. l f[—l——@ %) } !
TP

2anm

1 feature value
of the Batch

1 element
of the Batch

Def. (Batch Norm) Add Batch-Norm Unit before activation module
l - i 1

ZL e RV XE _ ZL e RV XE gl e XK (K = batch size)

Forward Pass: For each feature value i € {1,..., nl},

L
= pl e R X!

!
= ol e R X!

(GY & B! allows for flexibility)

oL

back-propagation
Backwards Pass: Given 2L, want q 92 (BL P lp &)
0z @&m (W* grad updates)

1

aiszK: oL 97y, 7§K: oL Zh —
oG, ozl oG, [T oz, (eh)2 +e
BiL_f: oL 'Bka_iaiL
OB, [T oz, 9B; im0zl
Thm. (Back-Propagation) Given z)BZLl : (using 0;; = I{t = j})

oL :i oL 4. 1 _<M.K717(Zik—ui)(Zﬁj—ui)
aZéJ‘ ozl ' K-of ! (a})?
(*.") 3 dependencies across the batch, not across the unit outputs:
oL KoL ozl
7 7; CYAN Y

ij

Convolutional Neural Networks

)

Filters
Max Pooling
Typical Architecture

Sequential Models

State Machines

Markov Decision Processes (MDP)
MDP: Finite-Horizon Solutions
Evaluating a Given Policy

Finding an Optimal Policy

MDP: Infinite-Horizon Solutions
Evaluating an Optimal Policy
Finding an Optimal Policy

Theory

Reinforcement Learning

Bandit Problems

Sequential Problems (SQP)

Model-Based RL

Policy Search

SQP: Value Function Learning & Q-Learning
Q-Learning

Function Approximation

Fitted Q-Learning

Recurrent Neural Networks

RINN Model
Sequence-to-Sequence RNN

arxiv.org/abs/1705.08292
arxiv.org/abs/1502.03167

By Zied Ben Chaouch

Back-Propagation Through Time

Training a Language Model

Vanishing Gradients & Gating Mechanisms
Simple Gated Recurrent Networks

Long Short-Term Memory

Recommender Systems

Content-Based Recommendations
Collaborative Filtering (CF)

CF Optimization

Alternating Least Squares

Stochastic Gradient Descent

Non-Parametric Methods

Introduction

Trees

Regression

Building a Tree

Pruning

Classification

Bagging & Random Forests
Nearest Neighbor

	Introduction
	Machine Learning
	Problem Class
	Assumptions
	Evaluation Criteria
	Model Type
	Model Class M/Parameter Fitting
	Algorithm

	Linear Classifiers
	Classification
	Linear Classifier
	Learning Alg. for the Linear Classifier
	Evaluating a Learning Algorithm

	The Perceptron
	Algorithm
	Offset
	Theory of the Perceptron

	Feature Representation
	Feature Transformation
	Polynomial Basis
	Discrete Features

	Margin Maximization
	ML as Optimization
	Regularization
	Maximize the Margin
	Support Vector Machines (SVM)

	Gradient Descent
	One Dimension
	Multiple Dimensions
	Application to SVM Objective
	Stochastic Gradient Descent

	Regression
	OLS Analytical Solution
	Regularization
	Optimize via Gradient Descent

	Neural Networks I
	Basic Element
	Networks
	Single Layer: Linear Hypothesis
	Multiple Layers

	Activation Functions
	Error Back-Propagation
	Training
	Loss Functions & Activation Functions
	Two-Class Classification & Log Likelihood
	Multi-Class Classification & Log Likelihood

	Neural Networks II
	Parameter Optimization
	Batches
	Adaptive Step-Size

	Regularization
	Methods For Ridge Regression
	Dropout
	Batch Normalization

	Convolutional Neural Networks
	Filters
	Max Pooling
	Typical Architecture

	Sequential Models
	State Machines
	Markov Decision Processes (MDP)
	MDP: Finite-Horizon Solutions
	Evaluating a Given Policy
	Finding an Optimal Policy

	MDP: Infinite-Horizon Solutions
	Evaluating an Optimal Policy
	Finding an Optimal Policy
	Theory

	Reinforcement Learning
	Bandit Problems
	Sequential Problems (SQP)
	Model-Based RL
	Policy Search

	SQP: Value Function Learning & Q-Learning
	Q-Learning
	Function Approximation
	Fitted Q-Learning

	Recurrent Neural Networks
	RNN Model
	Sequence-to-Sequence RNN
	Back-Propagation Through Time
	Training a Language Model
	Vanishing Gradients & Gating Mechanisms
	Simple Gated Recurrent Networks
	Long Short-Term Memory

	Recommender Systems
	Content-Based Recommendations
	Collaborative Filtering (CF)
	CF Optimization
	Alternating Least Squares
	Stochastic Gradient Descent

	Non-Parametric Methods
	Introduction
	Trees
	Regression
	Building a Tree
	Pruning
	Classification

	Bagging & Random Forests
	Nearest Neighbor

