
By Zied Ben Chaouch

6.036 Machine Learning
Last Updated April 16, 2019

Introduction

Machine Learning

Goal: make decisions or predictions based on data.
Problems to solve: Estimation + Generalization

Problem Characterization: .

• Problem Class: Nature of training data (Supervised?)

• Assumptions: Source of data? Form of solution?

• Evaluation Criteria: Prediction goal? Performance measure?

Solution Characterization: .

• Model Type: Intermediate model needed? Model used?

• Model Class: Parametric class of model needed?

• Algorithm: Computational process for making predictions

Problem Class

Superv. Learning: Given inputs x(i) ∈ Rd or discrete + outputs y(i)

• Classification: y(i) takes a finite set of values

• Regression: y(i) ∈ Rk

Unsuperv. Learning: Given inputs x(i) ∈ Rd only

• Density Estimation: {x(i)}ni=1
iid∼ P(X), find P for predictions

• Clustering: Partition samples into similar groups

• Dimensionality Reduction: e.g., Princip Component Analysis

Reinforc. Learning: Learn policy π : x→ y maximizing reward

• Agent observes current state x(0)

• Selects action y(0) & gets reward r(0)
(
x(0), y(0)

)
• Environment generates new state x(1) under P

(
X|x(0), y(0)

)
Sequential Learning: (Supervised) Learn mapping from input seq
x0, . . . , xn to output seq y0, . . . , ym.
Represent Map as state machine with functions f & g:
f : compute next hidden internal state given input
g: compute output given current hidden state

Other Settings: .

• Semi-Supervised Learn: For some x(i), missing y(i)

• Active Learn.: Minimize cost of obtaining labels y(i)

• Transfer/Meta Learn: Multip tasks, data∈related distribs

Assumptions

Data: IID or Markov Chain or adversarial

True Model: Can be described by a set of hypotheses

Evaluation Criteria
Loss Function: L(g, a) between guess g & actual a

0-1 Loss: L(g, a) = I{g = a}

Squared Loss: L(g, a) = (g − a)2

Linear Loss: L(g, a) = |g − a|

Asymetric Loss: L(g, a) =


1 g = 1 & a = 0

10 g = 0 & a = 1

0 g = a = 0, g = a = 1

Model Type
No Model: Predict directly from training data without construction
of any intermediate model. ex: k-Nearest Neighbor method

With Model: Fit model to training data (get prediction rule)+ use
model to make predictions
Prediction Rule: Hypothesis y = h(x; θ)

Training Error: En(h) = 1
n

∑n
i=1 L

(
h(x(i); θ), y(i)

)
Testing Error: E(h) = 1

n′
∑n+n′
i=n+1 L

(
h(x(i); θ), y(i)

)
Model Class M/Parameter Fitting
Model Class: M, set of possible models typically parametrized by
vector of parameters Θ = (θ, θ0)

ex: Linear Function: h(x; θ, θ0) = θT x+ θ0

Algorithm
What sequence of computational instructions should we run in order
to find a good model from our class?
ex: Least-Squares Minimization Algorithm: Minimize training error
En(θ) to determine Θ for h(x; θ, θ0)

Linear Classifiers

Classification

Def. (Binary Classifier) Map x ∈ Rd to y ∈ {−1,+1}

Def. (Feature) φ : Rd 7→ Rd
′
: work with φ(x) instead of x.

Def. (Training Data) Dn :=
{

(x(1), y(1)), . . . , (x(n), y(n))
}

Input x(i) ∈ Rd×1; Output y ∈ {−1,+1}.
Def. (Hypothesis Class) H := {classifiers h : Rd → {−1,+1}}
Def. (Hypothesis) h : x 7→ y

Def. (Learning Algorithm) Procedure mapping Dn 7→ h ∈ H
Def. (Training Error) Given training dataset Dn:

En(h) = 1
n

∑n
i=1 I{h(x(i)) 6= y(i)}

Def. (Testing Error) Given testing dataset Dn′ :
E(h) = 1

n′
∑n′
i=1 I{h(x(i)) 6= y(i)}

Linear Classifier
Def. (Sign Function) sgn (x) ∈ {+1, 0,−1}, ∀x ∈ R
Def. (Linear Classifier) Hypothesis class given by:

H :=
{
h(x; θ, θ0) = sgn

(
θT x+ θ0

)
: θ ∈ Rn×1, θ0 ∈ R

}
Def. (Hyperplane PΘ induced by Θ) θT x+ θ0 = 0 =⇒ θ ⊥ PΘ

Side of θ → ⊕; Side of (−θ)→ �; On PΘ → }.
xi intercept: xi = −θ0/θi
Def. (Linear Separable Data) Training dataset Dn is lin. separable

⇐⇒ ∃(θ, θ0) s.t. y(i)(θT x(i) + θ0) > 0 ∀i = 1 . . . n

⇐⇒ h(x(i); θ, θ0) = y(i) ⇐⇒ En(h) = 0

Learning Alg. for the Linear Classifier
RANDOM-LINEAR-CLASSIFIER (Dn, k, d) :

for j = 1 to k do

Randomly sample
(
θ(j), θ

(j)
0

)
from (Rd,R)

j∗ = argminj∈{1,...,k} En
(
θ(j), θ

(j)
0

)
return

(
θ(j∗), θ

(j∗)
0

)
Note: k ↗ =⇒ En ↘

Evaluating a Learning Algorithm
Idea: (To Evaluate the Performance of a) .

Classifier h ∈ H: Measure test error En(h)

Learning Algorithm: Hard! Ex: try Cross-Validation

• Train on other datasets: get h1, . . . , hk

• Compare the hk’s performance on a new testing set

Def. (Cross-Validation) k-fold Cross Validation for evaluation
CROSS-VALIDATE (D, k) :

Divide D into k chunks: D1, . . . ,Dk of similar size
for i = 1 to k do

Train hi on D \ Di
Compute test error Ei(hi) on non-Di data

return 1
k

∑k
i=1 Ei(hi)

Note: Cross-Validation evaluates the algorithm that produces the
hypotheses h, but does NOT evaluate the hypotheses h produced.

The Perceptron

Algorithm
Def. (Perceptron − Rosenblatt (1962)) .

Training Dataset: Dn =
{

(x(i), y(i)) : x(i) ∈ Rd×1, y(i) ∈ {±1}
}n
i=1

Binary Classifier: h(x; θ, θ0); Parameters: θ ∈ Rd×1, θ0 ∈ R
Iterations: τ steps.

PERCEPTRON (τ,Dn) :

θ0 = 0, and θ =
[
0 0 . . . 0

]T
for t = 1 to τ do

for i = 1 to n do
if y(i)(θT x(i) + θ0) ≤ 0 then

θ = θ + y(i)x(i)

θ0 = θ0 + y(i)

return (θ, θ0)

Note: If alg does not enter IF loop for n iterations: En(h) = 0!
Prop: If data is linearly separable, Perceptron will find it.

Offset
Thm. (Dim. Increase) .

Given θ0, θ =
[
θ1 . . . θd

]T , and x =
[
x1 . . . xd

]T :

Let θnew =
[
θ1 . . . θd θ0

]T , and xnew =
[
x1 . . . xd 1

]T
=⇒ θTnew · xnew = θT · x+ θ0
Note: Perceptron with offset ⇔ Perceptron though origin in dim d+ 1

PERCEPTRON-THROUGH-ORIGIN (τ,Dn) :

θ =
[
0 0 . . . 0

]T
for t = 1 to τ do

for i = 1 to n do
if y(i)(θT x(i)) ≤ 0 then

θ = θ + y(i)x(i)

return θ

By Zied Ben Chaouch

Theory of the Perceptron

Proposition (Distance of a Point x) to the hyperplane (θ, θ0):

Dist(θ,θ0)(x) = 1
‖θ‖

(
θT x+ θ0

)
Def. (Margin of a Labeled Point (x, y)) w.r.t hyperplane (θ, θ0):

γ(θ,θ0)(x, y) = y · 1
‖θ‖

(
θT x+ θ0

)
Prop: γ(x, y) > 0 ⇐⇒ x is

classified correctly as y by the linear classifier (hyperplane)

Def. (Margin of a Dataset Dn) w.r.t hyperplane (θ, θ0):

γ(θ,θ0)(Dn) = mini y
(i) · 1

‖θ‖

(
θT x(i) + θ0

)
Prop: γ(Dn) > 0 ⇐⇒ all

pts in Dn are classified correctly by the linear classifier (hyperplane)
Note: If γ(Dn) > 0, γ represents the dist from hyperpln to closest pt.

Thm. (Perceptron-Through-Origin Convergence Thm) If:

(a) ∃θ∗ ∈ Rd, ∃γ > 0 s.t. y(i) · 1
‖θ∗‖

(
θ∗T x(i) + θ0

)
≥ γ ∀i = 1...n

(b) ‖x(i)‖ ≤ R ∀i = 1...n (all pts have bdd size)

Then: Perceptron-Through-Origin makes at most (R/γ)2 mistakes.

Feature Representation

Feature Transformation

Def. (X-OR Dataset) D =

[
− +
+ −

]
Proposition (Transform X-OR) φ(x) =

[
x x2

]T
=⇒ X-OR is now linearly separable in 2D.

Note: This is the basis for Kernel Methods

Polynomial Basis

Method: get φ systematically (domain independent)

Idea: Use kth-order basis:
φ : [1, x, x2, x3]→ [1, x1, . . . , x

2
1, x1x2, . . . , x1x2x3, . . .]

General:

φ : [1, x, . . . , xk]→
[
x
k1
1 x

k2
2 . . . x

kd
k

]
{k1+k2+...+kd=k|0≤ni≤k}

In kth-order basis, we have
(k′+d−1

d−1

)
terms of order k′ ≤ k.

=⇒ We have a basis of size:
∑k
k′=0

(k′+d−1
d−1

)
Discrete Features

Method: get φ deliberately with our domain in mind (can be related
to semantics)

Idea: (Encoding Strategy) Assume data takes one of k discr values:

Numeric: Standardize them! (speeds up learning algo)

φ(x) = (x− x̄)/σ with x̄ = avg(x(i)) & σ = std(x(i))

Numeric with Breakpoints: Break into bins & use one-hot
ex: Age ≶ 21 =⇒ (Age < 21)&(Age ≥ 21)

Thermometer Code: Number but no natural ordering:

0 < j ≤ k =⇒ [1, 1, . . . , 1(j), 0, . . . , 0] (vector of length k)

Factored Code: Value can be split into two factors: Treat factors
separately ex: Car → (Brand; Model)

One-Hot Code: No natural numeric/ordering/factor structure:

0 < j ≤ k =⇒ [0, 0, . . . , 0, 1(j), 0, . . . , 0] (vector of length k)

Binary Code: Bad idea! need to teach your algo to decode input...

Text: Bag-Of-Words (BOW) model:

d = # words in our vocab: vector ∈ {0, 1}d with 1(j) ⇔ word j occurs

Margin Maximization

ML as Optimization
Idea: Frame ML problem into optimization problem
+ use standard algorithms/implementations to get hypothesis h(x; Θ)

Def. (Objective Function) J(Θ;Dn): Params Θ = (θ, θ0), Data Dn
Typically: J(Θ;Dn) = 1

n

∑n
i=1 L

(
h(x(i); Θ), y(i)

)
+ λ · R(θ)

=⇒ Choose Θ∗ := argminΘ J(Θ;Dn)

Regularization

Idea: Want to perform well on un-seen data (generalization): avoid
overfitting!

Def. (Regularizer) Typically: R(Θ) = ‖Θ−Θprior‖2

ex: No prior knowledge? =⇒ Regularize towards zero R(Θ) = ‖Θ‖2

Maximize the Margin
Assumptions Classification setting, 0-1 loss

Idea: Want to maximize the margin of dataset (regularization!)

Recall: γ(θ,θ0)(Dn) = mini y
(i) · 1

‖θ‖

(
θT x(i) + θ0

)
Def. (Margin Maximization) J(Θ,Dn) = −mini γ(x(i), y(i),Θ)
=⇒ Θ∗ = argminΘ J(Θ,Dn)

=⇒ Θ∗ = argmaxΘ mini γ(x(i), y(i),Θ)

Warning: This form of the objective can be tricky to optimize as it is
only sensitive to a single data point at a time
=⇒ gradient methods won’t work very well

Idea: Use a target γref & try to find separator s.t.

(a) γ(x(i), y(i)) > γref

(b) γref is big

Def. (Hinge Loss) Lh(v) = max(1− v, 0) =

{
1− v, if v < 1

0, if v ≥ 1

Example: Lh

(
γ

γref

)
=

{
1− γ

γref
, if γ < γref

0, if γ ≥ γref

Def. (Objective Function) To maximize the margin, minimize:

J(Θ, γref) = 1
n

∑n
i=1 Lh

(
γ(x(i),y(i),Θ)

γref

)
+ λ ·

(
1

λref

)2

= 1
n

∑n
i=1 Lh

(
1

γref ·‖θ‖
· y(i) ·

(
θT x(i) + θ0

))
+ λ ·

(
1

λref

)2

Support Vector Machines (SVM)

Idea: The scale of θ does not affect the classifier (separator) obtained:

=⇒ Pick ‖θ‖ !
= 1

γref
Note: large magin ⇔ small θ

Def. (SVM Objective Function) Want to minimize:

J(θ, θ0) = 1
n

∑n
i=1 Lh

(
y(i) ·

(
θT x(i) + θ0

))
+ λ · ‖θ‖2

Note: λ→ 0 =⇒ No regularization ; λ→∞ =⇒ θ → 0 ;
Lin. Sep. Data: very small λ =⇒ ∃ at least 1 pt on the margin

γ(x(i), y(i)) = γref = 1
‖θ‖ =⇒ y(i) ·

(
θT x(i) + θ0

)
= 1

Gradient Descent

Idea: Goal: minimize the f(Θ) = J(Dn; Θ) surface

• Start at an arbitrary point;

• Take a small step in direction of steepest descent;

• Take more small step in the new directions of steepest descent

One Dimension

Parameter: Θ ∈ R (1-dimensional!) − Initial Value: Θinit ∈ R

Step Size: η ∈ R

Function to Minimize: f(Dn; Θ) (so f : R→ R)

Derivative of the Function: f ′(Dn; Θ)

Accuracy Parameter: ε ∈ R+

1D-GRADIENT-DESCENT (Θinit, η, f, f
′, ε) :

Θ(0) = Θinit ; t = 0

while |f ′(Θ(t))| ≥ ε do
t = t+ 1

Θ(t) = Θ(t−1) − ηf ′
(
Dn; Θ(t−1)

)
return Θ(t)

Note: Other ways to terminate: cap # of iterations t, or stop when

|Θ(t) −Θ(t−1)| < ε, or when |f(Θ(t))− f(Θ(t−1))| < ε.
Note: Small η ⇒ slow convergence; Big η ⇒ oscillations or divergence
Thm. (Convex Optimization) If J(Θ) is convex:
∀ε > 0, ∃η s.t. 1D-GD converges within ε of the optimal Θ.
Note: Non-convex J: may ∃ local minima!

Multiple Dimensions

Parameter: Θ ∈ Rd+1 − Initial Value: Θinit ∈ Rd+1

Step Size: η ∈ R

Function to Minimize: f(Dn; Θ) (so f : Rd+1 → R)

Gradient of the Function: ∇Θf(Dn; Θ) =
[
∂f
∂Θ1

· · · ∂f
∂Θd+1

]T
Accuracy Parameter: ε ∈ R+

BATCH-GRADIENT-DESCENT (Θinit, η, f,∇Θf, ε) :

Θ(0) = Θinit ; t = 0

while |f(Θ(t))− f(Θ(t−1))| ≥ ε do
t = t+ 1
Θ(t) = Θ(t−1) − η∇Θf(Dn; Θ(t−1))

return Θ(t)

Application to SVM Objective

Hinge Loss: Lh(v) = max(1− v, 0) = 1− v · I{v < 1}

Derivative of Hinge Loss: L′h(v) = −1 · I{v < 1}

Objective: J(Dn; θ, θ0) ∈ R

J(Dn; θ, θ0) =
1

n

n∑
i=1

Lh

(
y

(i) · (θT x(i)
+ θ0)

)
+

1

2
λ‖θ‖2

θ-Gradient: ∇θJ(Dn; θ, θ0) ∈ Rd+1

∇θJ(Dn; θ, θ0) =
1

n

n∑
i=1

L
′
h

(
y

(i) · (θT x(i)
+ θ0)

)
y

(i)
x

(i)
+ λθ

θ0-Gradient: ∇θ0J(Dn; θ, θ0) = ∂
∂θ0

J(Dn; θ, θ0) ∈ R

∇θ0J(Dn; θ, θ0) =
1

n

n∑
i=1

L
′
h

(
y

(i) · (θT x(i)
+ θ0)

)
y

(i)

By Zied Ben Chaouch

SVM-GRADIENT-DESCENT (θinit, θ0,init, η, J, ε) :

θ(0) = θinit ; θ
(0)
0 = θ0,init ; t = 0

while |J(θ(t), θ
(t)
0)− J(θ(t−1), θ

(t−1)
0)| ≥ ε do

t = t+ 1

θ
(t)
0 = θ

(t−1)
0 + η ·

1

n

n∑
i=1

I
{
y

(i) · (θ(t−1)T
x

(i)
+ θ

(t−1)
0) < 1

}
y

(i)

θ(t) = θ
(t−1)

+

η ·
1

n

n∑
i=1

I
{
y

(i) · (θ(t−1)T
x

(i)
+ θ

(t−1)
0) < 1

}
y

(i)
x

(i)
+ λθ

(t−1)

return (θ(t), θ
(t)
0)

Note: λ does not appear in θ0 updates: don’t regularize the offset!
only the slope needs to be regularized (made simpler). Offset ≈ scaling

Stochastic Gradient Descent

Idea: If gradient is in form of a sum: f(Dn; Θ) =
∑n
i=1 fi(D

(i)
n ; Θ)

Don’t take 1 small step in the direction of the gradient
→ randomly select 1 term in sum and take tiny step in that direction.
You will move in the direction of the gradient on average.

STOCHASTIC-GRAD-DESCENT (Θinit, η, f,∇Θf1, . . . ,∇Θfn, T) :

Θ(0) = Θinit

for t = 1 to T do
Randomly get i ∈ {1, . . . , n} =⇒ Focus on (x(i), y(i)) ∈ D(i)

n

Θ(t) = Θ(t−1) − η(t) · ∇Θfi(D(i)
n ; Θ(t−1))

return Θ(t)

Thm. (Convex Optimization) If J(Θ) is convex:
∞∑
t=1

η(t) =∞ &

∞∑
t=1

η(t)
2
<∞ =⇒ SGD converges a.s. to optimal Θ

Note: For SGD, η must decrease! Ex: η ∼ 1/t
Note: • If f non-convex with many local optima: BGD gets trapped!
=⇒ taking samples from the gradient at some point Θ can make you

bounce off of local optima.
• May not want to optimize f perfectly (overfitting of training set)
=⇒ SGD can get lower test error (but probably not lower training
error) than BGD.

Regression

Data: Dn = {(x(1), y(1)), . . . , (x(n), y(n)}, with x(i) ∈ Rd×1, y(i) ∈ R.

Hypothesis: h : Rd → R; Linear: h(x; θ, θ0) = θT x+ θ0

Non-Linear Feature Transformation φ: h(x; θ, θ0) = θTφ(x) + θ0

Loss Function: Squared-Error L(guess− actual)2

Objective: Mean SE J(θ, θ0) = 1
n

∑n
i=1

(
θT x(i) + θ0 − y(i)

)2

Solution: (θ∗, θ∗0) = argminθ,θ0 J(θ, θ0)

OLS Analytical Solution

Def. (Ordinary Least Squares) Linear hypothesis + MSE

Assumptions x(i) augmented with row of 1’s ⇒ can ignore θ0.

X ∈ Rd×n: X =
[
x(1)| · · · |x(n)

]
, x(i) =

[
x

(i)
1 · · · x

(i)
d

]T
∈ Rd×1

Y =
[
y(1) · · · y(n)

]
∈ R1×n

W = XT ∈ Rn×d and T = Y T ∈ Rn×1

Thm. (OLS Solution) .

• Objective: JOLS(θ) = 1
n (Wθ − T)T (Wθ − T)

• Gradient: ∇θJOLS = 2
nW

T (Wθ − T)
!
= 0

• Solution: θ∗OLS = (WTW)−1WTT = (XXT)−1XY T

Regularization
Def. (Ridge Regression) .

• Objective: JRidge(θ) = 1
n

∑n
i=1

(
θT x(i) + θ0 − y(i)

)2
+ λ‖θ‖2

Warning: In what follows: θ0 included in θ!

• Gradient: ∇θJRidge = 2
nW

T (Wθ − T) + 2λθ
!
= 0

• Solution: θ∗Ridge = (WTW + nλ1d×d)−1WTT

Note: (WTW + nλ1n×n) invertible when λ > 0

Def. (Bias-Variance Tradeoff) Hypoth h ∈ H contributes to errors
on test data by:
• Structural Err: (Bias) 6 ∃h ∈ H describing data well (H too simple)
• Estimation Err: (Variance) Not enough data to pick good h ∈ H
Note: Regularization: λ↗ ⇒ Bias ↗ & Variance ↘

Optimize via Gradient Descent

Idea: Closed form solution ∼ O(d3) to invert WTW : too long!

Def. (Ridge Gradient Descent/SGD) .

• Objective: JRidge(θ) = 1
n

∑n
i=1

(
θT x(i) + θ0 − y(i)

)2
+ λ‖θ‖2

• Gradients: ∇θJRidge = 2
n

∑n
i=1

(
θT x(i) + θ0 − y(i)

)
x(i) + 2λθ

∇θ0JRidge = ∂
∂θ0

JRidge = 2
n

∑n
i=1

(
θT x(i) + θ0 − y(i)

)
Thm. (Convex Optimization) OLS & Ridge are convex objectives!
=⇒ unique minimum & guaranteed BGD convergence to optimum for

small enough step size η

Neural Networks I

View 1: NN = Application of SGD for classification/regression with
a potentially very rich hypothesis class H
View 2: NN = Brain-inspired network of neuron-like computing
elements that learn distributed representations

View 3: NN = Method to build applications that make predictions
with huge data in very complex domains

Basic Element
Def. (Neuron/Unit/Node:)

Input: x ∈ Rm Output: a = f(z) ∈ R
Weights: w ∈ Rm Offset: w0 ∈ R

Pre-Activation: z = wT x(i) + w0 =
∑m
j=1 wjx

(i)
j + w0

Activation Function: a = f(z) = f(wT x(i) + w0)

Def. (Objective Function) Note: Use in BGD/SGD!

J(Dn;w,w0) =
∑n
i=1 L

(
NN(x(i);w,w0), y(i)

)
NN(·) = NN output ; L(guess, actual) = Loss Function

Note: Linear Classifiers with Hinge Loss + Linear Regressions with
Quadratic loss =⇒ 1 neuron with f(x) = x

Example: 1 Neuron, f(z) = ez & L(g, a) = (g − a)2:

J(w,w0) =
∑n
i=1

(
exp

(∑m
j=1 wjx

(i)
j + w0

)
− y(i)

)2

∇wJ = 2
∑n
i=1 x

(i)exp
(
wT x(i) + w0

)(
exp

(
wT x(i) + w0

)
− y(i)

)
∇w0J = 2

∑n
i=1 exp

(
wT x(i) + w0

)(
exp

(
wT x(i) + w0

)
− y(i)

)

Networks
Def. (NN) Input = x ∈ Rm; Output = a ∈ Rn (n Output Units)

Def. (Feed-Forward NN) Acyclic (neuron input ⊥⊥ of own output)
+ Data flows one way: inputs → outputs
+ NN(·) = composition of each neuron’s function

Single Layer: Linear Hypothesis

Def. (Layer) Set of non-connected units with:
. Input: x ∈ Rm ; Output/Activation: a ∈ Rn

. Fully Connected: Same inputs to each layer x
(i)
1 , . . . , x(i)

m

Layer’s Weight Matrix: W l ∈ Rm×n Offset Vect: W l
0 ∈ Rn×1

Layer Inputs: X ∈ Rm×1 Pre-Activat◦: Z = WTX +W0 ∈ Rn×1

Activation: A = f(Z) = f(WTX +W0) ∈ Rn×1 applied element-wise

Note: Single Layer ⇐⇒ Linear Hypotheses!

Multiple Layers

Def. (Layers) Set of non-connected units with:

Layer’s Weight Matrix: W l ∈ Rm
l×nl Offset: W l

0 ∈ Rn
l×1

Layer Inputs: A ∈ Rm
l×1 ; ml inputs & nl = ml+1 outputs

Pre-Activat◦: Zl = W lT Al−1 +W l
0 ∈ Rn

l×1

Activation: Al = f l(Zl) = f(W lT Al−1 +W l
0) ∈ Rn

l×1 element-wise

Activation Functions

Thm. (No Activation) If f l(Z) = Z ∀l (so activation = identity)

=⇒ AL = WLTW (L−1)T · · ·W 1TX = WTotalTX
=⇒ AL = a linear function of X! One layer is enough

Example: (Activation Functions) .
Step Function: step(z) = I{z ≥ 0} (discontinuity ⇒ hard for BGD)
Rectified Linear Unit: ReLU(z) = max(0, z)
Sigmoid/Logistic Function: σ(z) = 1

1+e−z
∈ [0, 1] ∼ probability

Hyperbolic Tangent: tanh(z) = ez−e−z

ez+e−z
∈ [−1, 1]

Softmax Funct◦: softmax(z) =

ez1/∑n
i=1 e

zi

· · ·
ezn/

∑n
i=1 e

zi

 ∈ [0, 1]n, ∀Z ∈ Rn

Prop: Softmax(z) ∼ a prob. distribution ((∵)
∑

components = 1)

Prop: d
dzReLU(z) = step(z)
d
dzσ(z) = σ(z) · (1− σ(z))
d
dz tanh(z) = 4

(ez+e−z)2

Note: ReLU: use in hidden layers
Sigmoid: binary classification output
Softmax: multi-class classification

output

By Zied Ben Chaouch

Error Back-Propagation

Note: We will frame it for SGD; For BGD do
∑
i∇WL

(i)

Idea: (Goal) Compute ∇WL (NN(x;W), y), W := {W (l),W
(l)
0 }

L
l=1

Proposition (Final Layer) loss = L (NN(x;W), y) = L(AL, y)

=⇒
∂loss

∂WL︸ ︷︷ ︸
mL×nL

=
∂ZL

∂WL

∂AL

∂ZL
∂loss

∂AL
= A

L−1︸ ︷︷ ︸
mL×1

(
∂loss

∂ZL

)T
︸ ︷︷ ︸

1×nL

(∵) AL = fL(ZL) ; ZL = WLT AL−1 +WL
0

Proposition (Any Layer)
∂loss

∂W l︸ ︷︷ ︸
ml×nl

= A
l−1︸ ︷︷ ︸

ml×1

(
∂loss

∂Zl

)T
︸ ︷︷ ︸

1×nl

Proposition (First Layer) Note: ml+1 = nl

∂loss

∂Z1︸ ︷︷ ︸
n1×1

=
∂A1

∂Z1︸ ︷︷ ︸
n1×n1

∂Z2

∂A1︸ ︷︷ ︸
m2×n2

∂A2

∂Z2︸ ︷︷ ︸
n2×n2

· · ·
∂AL−1

∂ZL−1︸ ︷︷ ︸
nL−1×nL−1

∂ZL

∂AL−1︸ ︷︷ ︸
mL×nL

∂AL

∂ZL︸ ︷︷ ︸
nL×nL

∂loss

∂AL︸ ︷︷ ︸
nL×1︸ ︷︷ ︸

∂loss/∂Z2︸ ︷︷ ︸
∂loss/∂A1

Note: (Dimensions) Recall that:

• ∂loss

∂AL
= nL × 1

• ∂Zl

∂Al−1 = W l = ml × nl and ∂Zl

∂Wl = Al−1 , ∂Zl

∂Wl
0

= I
nl×nl

• ∂Al

∂Zl
= W l = nl × nl

Thm. (First Layer) We finally get:

∂loss

∂Z1︸ ︷︷ ︸
n1×1

=
∂A1

∂Z1︸ ︷︷ ︸
n1×n1

W
2︸︷︷︸

m2×n2

∂A2

∂Z2︸ ︷︷ ︸
n2×n2

· · ·
∂AL−1

∂ZL−1︸ ︷︷ ︸
nL−1×nL−1

W
L︸︷︷︸

mL×nL

∂AL

∂ZL︸ ︷︷ ︸
nL×nL

∂loss

∂AL︸ ︷︷ ︸
nL×1

Thm. (Any Layer: Error Back-Propagation) We finally get:

∂loss

∂Zl︸ ︷︷ ︸
nl×1

=
∂Al

∂Zl︸ ︷︷ ︸
nl×nl

W
l+1︸ ︷︷ ︸

ml+1×nl+1

∂Al+1

∂Zl+1︸ ︷︷ ︸
nl+1×nl+1

· · · W
L︸︷︷︸

mL×nL

∂AL

∂ZL︸ ︷︷ ︸
nL×nL

∂loss

∂AL︸ ︷︷ ︸
nL×1

Note: Like a “blame propagat◦”: how much is each module to blame?
• Forward: input → output
• Backward: input, output, ∂loss/∂output → ∂loss/∂input
• Weight Grad: input, ∂loss/∂output → ∂loss/∂W

Training
Idea: (Goal) SGD for a Feed-Forward NN

SGD-NEURAL-NETS (Dn, T, L, (m1, . . . ,mL), (f1, . . . , fL)) :

for l = 1 to L do . Initialize W l matrix and W l
0 vector

W l
ij ∼ N

(
0, 1

ml

)
. ml = # of input units

W l
0j ∼ N (0, 1)

for t = 1 to T do
i = Unif {1, . . . , n} ; A0 = x(i)

for l = 1 to L do . Forward pass: get AL

Zl = W lT Al−1 +W l
0

Al = f l(Zl)
loss = L(AL, y(i))

for l = L to 1 do
if l = L then . Error Back-Propagation

∂loss

∂Al
= ∂loss

∂AL

else
∂loss

∂Al
= ∂loss

∂Zl+1
∂Zl+1

∂Al

∂loss

∂Zl
= ∂loss

∂Al
∂Al

∂Zl

∂loss

∂Wl = ∂loss

∂Zl
∂Zl

∂Wl = ∂loss

∂Zl
Al−1 . Get Gradient

∂loss

∂Wl
0

= ∂loss

∂Zl
∂Zl

∂Wl
0

= ∂loss

∂Zl
w.r.t Weights

W l = W l − η(t) · ∂loss
∂Wl . SGD Update

W l
0 = W l − η(t) · ∂loss

∂Wl
0

return
{

(W 1,W 1
0), . . . , (WL,WL

0)
}

Loss Functions & Activation Functions

Loss fL

Squared Linear
Hinge Linear
NLL Sigmoid

NLLM Softmax

Idea: (Loss Function Matching) Match Loss Function with
Activation Function of last layer!

Two-Class Classification & Log Likelihood

Idea: For Classification:
X Hinge loss: smoother than 0-1 loss (which is not good for BGD)
X NLL Loss: nice probabilistic interpretation + extends to multi-class

Assumptions Output layer: Activation function f l = sigmoid.
Note: So output aL ∈ [0, 1] ∼ P (y(x) = 1), (where labels y ∈ {0, 1})

Idea: (Goal) We want to maximize:
P (NN assigns correct labels to all inputs)

=
∏n
i=1(a(i))y

(i)
· (1− a(i))1−y(i)

Note: Maximize the log!

Def. (Negative Log Likelihood − NLL) Log Loss/Cross Entropy:

LNLL(a(i), y(i)) := −
(
y(i) log a(i) + (1− y(i)) log(1− a(i))

)
Objective: J(Dn;W) :=

∑n
i=1 LNLL(a(i), y(i))

Multi-Class Classification & Log Likelihood

Assumptions K = # Classes
Labels: 1-hot vector y = [y1, . . . , yK]T with yk = 1 if xk ∈ Class k

Output layer: Activation function f l = Softmax.
So Output aL = [a1, . . . , aK]T ∈ [0, 1]K ∼ Prob Dist over all K classes

Idea: (Goal) We want to maximize:

P (NN assigns correct class to all inputs) =
∏n
i=1

∏K
k=1(a

(i)
k)y

(i)
k

Note: Maximize the log!

Def. (Negative Log Likelihood Multiclass − NLLM) .

LNLLM (a(i), y(i)) := −
∑K
k=1 y

(i)
k log a

(i)
k

Objective: J(Dn;W) :=
∑n
i=1 LNLLM (a(i), y(i))

Note: If k = 2: y2 = 1− y1 and a2 = 1− a1.

Neural Networks II

Parameter Optimization
Idea: Take advantage of structure of Loss Function + Hypothesis
Class to improve optimization of weights.

Batches

Assumptions Objective: J(Dn;W) =

n∑
i=1

L
(
h(x

(i)
;W), y

(i)
)

Idea: Update Rules:

• BGD: W = W − η
∑n
i=1∇WL

(
h(x(i);W), y(i)

)
• SGD: W = W − η(t)∇WL

(
h(x(i);W), y(i)

)
, i ∼ Unif{1, . . . , n}

• Size k Mini-Batch: W = W − η
∑k
i=1∇WL

(
h(x(i);W), y(i)

)
Note: BGD = too much computation if n large
SGD = if data has a lot of variability, η must be very small to average
moving over competing directions ⇒ slow

Def. (Mini-Batch of size k) Between BGD and SGD!
• Select k datapoints uniformly at random from data Dn
• Update over the batch: W = W − η

∑k
i=1∇WL

(
h(x(i);W), y(i)

)
Note: k = n =⇒ BGD ; k = 1 =⇒ SGD

Idea: Randomly shuffle data Dn, and cut into ∼ n/k batches of size k.

MINI-BATCH-SGD (NN,Dn, k) :

n = length(Dn)
while not terminated do

Run RANDOM-SHUFFLE (Dn)
for i = 1 to n/k do

Run BATCH-GRADIENT-UPDATE (NN,Dn[(i− 1)k : ik])

Adaptive Step-Size

Goal: Choose step size η to avoid exploding/vanishing gradients in
back-propagation due to multiplication
=⇒ Use independent step-size parameter for each weight + update

based on local view of how the gradients updates have performed
=⇒ Need different η in each layer & for each weight

Running Averages:
Idea: Estimate a weighted avg of a sequence of data
Input: Sequence a1, a2, . . . , aT
Output: Sequence of running avg values A0, A1, . . . , AT

Def. (Running Avg)

{
A0 = 0

At = γtAt−1 + (1− γt)at
with γt ∈ (0, 1)

Example: (Moving Avg) Cst γt = γ: AT =
∑T
t=0 γ

T−t · (1− γ)at
Also called Decaying Average!
Note: Later inputs at have more effect on At than early inputs

Example: (Equal-Weighted Avg) γt = t−1
t : AT = 1

T+1

∑T
t=0 at

Momentum:
Idea: Special case of running avg to describe strategies to compute η
Momentum = “avg” recent grad updates to avoid bounce back & forth
=⇒ Smoothening of trajectory

Def. (Momentum) Start with V0 = 0:

• Def 1:

{
Vt = γ · Vt−1 + η · ∇W J(Wt−1)

Wt = Wt−1 − Vt

• Def 2:

{
Mt = γ ·Mt−1 + (1− γ) · ∇W J(Wt−1)

Wt = Wt−1 − η̃ ·Mt

Def 1 ⇐⇒ Def 2: use η := η̃ · (1− γ)

Note: Def 2: gradient update with step size η̃ on Moving Avg of
gradients with param γ
Prop: Vt bigger in dims of ∇θ that consistently have same sign
Note: Need to set 2 extra params: η & γ −→ usually γ ∼ 0.9
Prop: γ small =⇒ no averaging/usual no-momentum method

By Zied Ben Chaouch

Adadelta:

Idea: BGD/SGD can be slow if J(W) has a plateau (flat region)

Goal: Pick large η in flat parts; small η in steep parts
=⇒ Care about magnitude of gradient

Def. (Adadelta) In each layer of the NN:
gt,j = ∇W J(Wt−1)j
Gt,j = γ ·Gt−1,j + (1− γ) · g2

t,j =⇒ large when steep/small when flat

Wt,j = Wt−1,j − η√
Gt,j+ε

· gt,j −→ use ε to avoid blow-ups

Gt,j = Moving Avg of square (ignore sign) of grad’s jth component

Adam:

Idea: Today’s default method to manage step sizes η in NN
=⇒ Combine momentum + Adadelta ideas!

Warning: Adam might actually violate SGD convergence conditions!
Paper: arxiv.org/abs/1705.08292

Def. (Adam) .
Step 1: Moving Avg of Grad & (Grad)2 ∼ mean/var of weight j’s grad
m0 = v0 = 0

gt,j = ∇W J(Wt−1)j
mt,j = B1 ·mt−1,j + (1− B1) · gt,j
vt,j = B2 · vt−1,j + (1− B2) · g2

t,j

Step 2: Bias-Correction for initializing m0 = v0 = 0m̂t,j = 1
1−Bt1

·mt,j
v̂t,j = 1

1−Bt2
· vt,j

Step 3: Gradient update Wt,j = Wt−1,j − η · 1√
v̂t,j+ε

m̂t,j

Suggestion: Use B1 = 0.9, B2 = 0.999, and ε = 10−8

Note: Adam is not very sensitive to (B1, B2, ε) parameters

Implement: Store matrix for (mlt, v
l
t, g

l
t, (g

l
t)

2) in each layer of NN.

Regularization

Recap: Optimize loss on training data =⇒ overfitting possible
Large Deep NN: a lot of data & params ∼ actually not major issue
Still want to make sure that minimizing training loss generalizes well

Methods For Ridge Regression

Weight Decay:

Goal: Penalize the norm of all the weights ∼ Ridge Regression

Def. (Weight Decay) Objective:

J(W) =
∑n
i=1 L

(
NN(x(i);W) , y(i)

)
+ 1

2λ‖W‖
2 , λ ∈ (0, 1)

Proposition (Weight Updates) Using weight decay: (η ∈ (0, 1))

Wt = Wt−1(1− λη)− η · ∇WL
(
NN(x(i);Wt−1) , y(i)

)
(∵) Wt = Wt−1 − η ·

[
∇WL

(
NN(x(i);Wt−1) , y(i)

)
+ λWt−1

]
Note: “Decay” Wt−1 by a factor of (1− λη) + take a gradient step

Early Stopping: (Equivalent to Weight Decay)

Def. (Epoch) One pass through training (or could be more)

Def. (Early Stopping) At each epoch: evaluate loss of current W on
a validation set. =⇒ Stop when error starts to increase systematically

Noise Addition [Bishop]:(Equivalent to Weight Decay)

Def. (Noise Addition) Perturb the x(i) values of training data:
Add small amount of N(0, σ2

err) noise before each gradient computation
Note: Overfitting ↘ as training data perturbed on each training step

Dropout

Idea: Instead of perturbing data each time: perturb the network!

Note: Good for Deep Learning + robust to data perturbation

Def. (Dropout) During training phase, for each training example:

For each unit −→ randomly pick alj ∼ Ber(1− p) =⇒ aij ∈ {0, 1}
With prob p: alj = 0⇒ no contrib to output & no grad update for unit
After training: × all weights by p⇒ achieve same avg activation levels

Proposition (Dropout Implementation) During Training,

• On each Forward Pass: al = f(zl) ∗ dl, with dl ∈ {Ber(1− p)}n
l

• Backwards Pass: no further changes (depends on al anyway)
−→ Common to set p = 0.5 Note: ∗ = componentwise ×

Batch Normalization

Ref. arxiv.org/abs/1502.03167

Idea: (Covariate Shift) Input: X ∼ PX =⇒ Output A ∼ PX,W
But A = input to 2nd layer of NN
=⇒ Distrib of input changes each time we update weights W
=⇒ Standardize input values for each mini-batch!

Note: Batch Normalization has regularization effect!
Each mini-batch of data is mildly perturbed: overfitting ↘

Def. (Batch Norm) Add Batch-Norm Unit before activation module

Zl ∈ Rn
l×K −→ Ẑl ∈ Rn

l×K −→ Al ∈ Rm
l×K (K = batch size)

Forward Pass: For each feature value i ∈ {1, . . . , nl},
µli =

1

K

K∑
j=1

Z
l
ij =⇒ µl ∈ Rn

l×1

σli =

√√√√ 1

K

K∑
j=1

(
Zlij − µi

)2
=⇒ σl ∈ Rn

l×1

=⇒ Ẑlij := G
l
i ·

Zlij − µ
l
i√

(σli)
2 + ε

+ B
l
i (Gli & Bli allows for flexibility)

Backwards Pass: Given ∂L

∂Ẑl
, want

{
∂L

∂Zl
(back-propagation)

∂L

∂Gl
& ∂L

∂Bl
(W l grad updates)



∂L

∂Gli
=

K∑
k=1

∂L

∂Ẑlik
·
∂Ẑlik
∂Gli

=
K∑
k=1

∂L

∂Ẑlik
·
Zlik − µ

l
i√

(σli)
2 + ε

∂L

∂Bli
=

K∑
k=1

∂L

∂Ẑlik
·
∂Ẑlik
∂Bli

=

K∑
k=1

∂L

∂Ẑlik

Thm. (Back-Propagation) Given ∂L

∂Ẑl
: (using δij = I{i = j})

∂L

∂Zlij
=

K∑
k=1

∂L

∂Ẑlik
·Gli ·

1

K · σli
·
(
δjk ·K − 1−

(Zlik − µ
l
i)(Z

l
ij − µ

l
i)

(σli)
2

)
(∵) ∃ dependencies across the batch, not across the unit outputs:

∂L

∂Zlij
=

K∑
k=1

∂L

∂Ẑlik
·
∂Ẑlik
∂Zlij

Convolutional Neural Networks

Filters

Max Pooling

Typical Architecture

Sequential Models

State Machines

Markov Decision Processes (MDP)

MDP: Finite-Horizon Solutions

Evaluating a Given Policy

Finding an Optimal Policy

MDP: Infinite-Horizon Solutions

Evaluating an Optimal Policy

Finding an Optimal Policy

Theory

Reinforcement Learning

Bandit Problems

Sequential Problems (SQP)

Model-Based RL

Policy Search

SQP: Value Function Learning & Q-Learning

Q-Learning

Function Approximation

Fitted Q-Learning

Recurrent Neural Networks

RNN Model

Sequence-to-Sequence RNN

arxiv.org/abs/1705.08292
arxiv.org/abs/1502.03167

By Zied Ben Chaouch

Back-Propagation Through Time

Training a Language Model

Vanishing Gradients & Gating Mechanisms

Simple Gated Recurrent Networks

Long Short-Term Memory

Recommender Systems

Content-Based Recommendations

Collaborative Filtering (CF)

CF Optimization

Alternating Least Squares

Stochastic Gradient Descent

Non-Parametric Methods

Introduction

Trees

Regression

Building a Tree

Pruning

Classification

Bagging & Random Forests

Nearest Neighbor

	Introduction
	Machine Learning
	Problem Class
	Assumptions
	Evaluation Criteria
	Model Type
	Model Class M/Parameter Fitting
	Algorithm

	Linear Classifiers
	Classification
	Linear Classifier
	Learning Alg. for the Linear Classifier
	Evaluating a Learning Algorithm

	The Perceptron
	Algorithm
	Offset
	Theory of the Perceptron

	Feature Representation
	Feature Transformation
	Polynomial Basis
	Discrete Features

	Margin Maximization
	ML as Optimization
	Regularization
	Maximize the Margin
	Support Vector Machines (SVM)

	Gradient Descent
	One Dimension
	Multiple Dimensions
	Application to SVM Objective
	Stochastic Gradient Descent

	Regression
	OLS Analytical Solution
	Regularization
	Optimize via Gradient Descent

	Neural Networks I
	Basic Element
	Networks
	Single Layer: Linear Hypothesis
	Multiple Layers

	Activation Functions
	Error Back-Propagation
	Training
	Loss Functions & Activation Functions
	Two-Class Classification & Log Likelihood
	Multi-Class Classification & Log Likelihood

	Neural Networks II
	Parameter Optimization
	Batches
	Adaptive Step-Size

	Regularization
	Methods For Ridge Regression
	Dropout
	Batch Normalization

	Convolutional Neural Networks
	Filters
	Max Pooling
	Typical Architecture

	Sequential Models
	State Machines
	Markov Decision Processes (MDP)
	MDP: Finite-Horizon Solutions
	Evaluating a Given Policy
	Finding an Optimal Policy

	MDP: Infinite-Horizon Solutions
	Evaluating an Optimal Policy
	Finding an Optimal Policy
	Theory

	Reinforcement Learning
	Bandit Problems
	Sequential Problems (SQP)
	Model-Based RL
	Policy Search

	SQP: Value Function Learning & Q-Learning
	Q-Learning
	Function Approximation
	Fitted Q-Learning

	Recurrent Neural Networks
	RNN Model
	Sequence-to-Sequence RNN
	Back-Propagation Through Time
	Training a Language Model
	Vanishing Gradients & Gating Mechanisms
	Simple Gated Recurrent Networks
	Long Short-Term Memory

	Recommender Systems
	Content-Based Recommendations
	Collaborative Filtering (CF)
	CF Optimization
	Alternating Least Squares
	Stochastic Gradient Descent

	Non-Parametric Methods
	Introduction
	Trees
	Regression
	Building a Tree
	Pruning
	Classification

	Bagging & Random Forests
	Nearest Neighbor

