

6.036 Machine Learning

Last Updated April 16, 2019

Introduction

Machine Learning

Goal: make decisions or predictions based on data.

Problems to solve: Estimation + Generalization

Problem Characterization:

- Problem Class: Nature of training data (Supervised?)
- Assumptions: Source of data? Form of solution?
- Evaluation Criteria: Prediction goal? Performance measure?

Solution Characterization:

- Model Type: Intermediate model needed? Model used?
- Model Class: Parametric class of model needed?
- Algorithm: Computational process for making predictions

Problem Class

Superv. Learning: Given inputs $x^{(i)} \in \mathbb{R}^d$ or discrete + outputs $y^{(i)}$

- **Classification:** $y^{(i)}$ takes a finite set of values
- **Regression:** $y^{(i)} \in \mathbb{R}^k$

Unsuperv. Learning: Given inputs $x^{(i)} \in \mathbb{R}^d$ only

- **Density Estimation:** $\{x^{(i)}\}_{i=1}^n \stackrel{\text{iid}}{\sim} \mathbb{P}(X)$, find \mathbb{P} for predictions
- **Clustering:** Partition samples into similar groups
- **Dimensionality Reduction:** e.g., Principal Component Analysis

Reinforc. Learning: Learn policy $\pi: x \rightarrow y$ maximizing reward

- Agent observes current state $x^{(0)}$
- Selects action $y^{(0)}$ & gets reward $r^{(0)}(x^{(0)}, y^{(0)})$
- Environment generates new state $x^{(1)}$ under $\mathbb{P}(X|x^{(0)}, y^{(0)})$

Sequential Learning: (Supervised) Learn mapping from input seq x_0, \dots, x_n to output seq y_0, \dots, y_m .

Represent Map as **state machine** with functions f & g :

f : compute next hidden internal state given input

g : compute output given current hidden state

Other Settings:

- **Semi-Supervised Learn:** For some $x^{(i)}$, missing $y^{(i)}$
- **Active Learn.:** Minimize cost of obtaining labels $y^{(i)}$
- **Transfer/Meta Learn:** Multiple tasks, data-related distributions

Assumptions

Data: IID or Markov Chain or adversarial

True Model: Can be described by a set of hypotheses

Evaluation Criteria

Loss Function: $L(g, a)$ between guess g & actual a

0-1 Loss: $L(g, a) = \mathbb{I}\{g = a\}$

Squared Loss: $L(g, a) = (g - a)^2$

Linear Loss: $L(g, a) = |g - a|$

Asymmetric Loss: $L(g, a) = \begin{cases} 1 & g = 1 \& a = 0 \\ 10 & g = 0 \& a = 1 \\ 0 & g = a = 0, g = a = 1 \end{cases}$

Model Type

No Model: Predict directly from training data without construction of any intermediate model. ex: ***k*-Nearest Neighbor method**

With Model: Fit model to training data (get prediction rule) + use model to make predictions

Prediction Rule: Hypothesis $y = h(x; \theta)$

Training Error: $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}; \theta), y^{(i)})$

Testing Error: $\mathcal{E}(h) = \frac{1}{n'} \sum_{i=n+1}^{n+n'} L(h(x^{(i)}; \theta), y^{(i)})$

Model Class \mathcal{M} /Parameter Fitting

Model Class: \mathcal{M} , set of possible models typically parametrized by vector of parameters $\Theta = (\theta, \theta_0)$

ex: Linear Function: $h(x; \theta, \theta_0) = \theta^T x + \theta_0$

Algorithm

What sequence of computational instructions should we run in order to find a good model from our class?

ex: Least-Squares Minimization Algorithm: Minimize training error $\mathcal{E}_n(\theta)$ to determine Θ for $h(x; \theta, \theta_0)$

Linear Classifiers

Classification

Def. (Binary Classifier) Map $x \in \mathbb{R}^d$ to $y \in \{-1, +1\}$

Def. (Feature) $\phi: \mathbb{R}^d \mapsto \mathbb{R}^{d'}$: work with $\phi(x)$ instead of x .

Def. (Training Data) $\mathcal{D}_n := \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$

Input $x^{(i)} \in \mathbb{R}^{d \times 1}$; Output $y \in \{-1, +1\}$.

Def. (Hypothesis Class) $\mathcal{H} := \{\text{classifiers } h: \mathbb{R}^d \rightarrow \{-1, +1\}\}$

Def. (Hypothesis) $h: x \mapsto y$

Def. (Learning Algorithm) Procedure mapping $\mathcal{D}_n \mapsto h \in \mathcal{H}$

Def. (Training Error) Given training dataset \mathcal{D}_n :

$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{h(x^{(i)}) \neq y^{(i)}\}$

Def. (Testing Error) Given testing dataset $\mathcal{D}_{n'}$:

$\mathcal{E}(h) = \frac{1}{n'} \sum_{i=1}^{n'} \mathbb{I}\{h(x^{(i)}) \neq y^{(i)}\}$

Linear Classifier

Def. (Sign Function) $\text{sgn}(x) \in \{+1, 0, -1\}, \forall x \in \mathbb{R}$

Def. (Linear Classifier) Hypothesis class given by:

$\mathcal{H} := \{h(x; \theta, \theta_0) = \text{sgn}(\theta^T x + \theta_0) : \theta \in \mathbb{R}^{n \times 1}, \theta_0 \in \mathbb{R}\}$

Def. (Hyperplane P_Θ induced by Θ) $\theta^T x + \theta_0 = 0 \implies \theta \perp P_\Theta$

Side of $\theta \rightarrow \oplus$; Side of $(-\theta) \rightarrow \ominus$; On $P_\Theta \rightarrow \odot$.

x_i intercept: $x_i = -\theta_0/\theta_i$

Def. (Linear Separable Data) Training dataset \mathcal{D}_n is lin. separable

$\iff \exists (\theta, \theta_0)$ s.t. $y^{(i)}(\theta^T x^{(i)} + \theta_0) > 0 \forall i = 1 \dots n$

$\iff h(x^{(i)}; \theta, \theta_0) = y^{(i)} \iff \mathcal{E}_n(h) = 0$

Learning Alg. for the Linear Classifier

RANDOM-LINEAR-CLASSIFIER (\mathcal{D}_n, k, d) :

for $j = 1$ to k do

Randomly sample $(\theta^{(j)}, \theta_0^{(j)})$ from $(\mathbb{R}^d, \mathbb{R})$

$\theta^{*} = \arg \min_{j \in \{1, \dots, k\}} \mathcal{E}_n(\theta^{(j)}, \theta_0^{(j)})$

return $(\theta^{*}, \theta_0^{*})$

Note: $k \nearrow \implies \mathcal{E}_n \searrow$

Evaluating a Learning Algorithm

Idea: (To Evaluate the Performance of a)

Classifier $h \in \mathcal{H}$: Measure **test** error $\mathcal{E}_n(h)$

Learning Algorithm: Hard! Ex: try **Cross-Validation**

- Train on other datasets: get h_1, \dots, h_k
- Compare the h_k 's performance on a new testing set

Def. (Cross-Validation) k -fold Cross Validation for evaluation

CROSS-VALIDATE (\mathcal{D}, k) :

Divide \mathcal{D} into k chunks: $\mathcal{D}_1, \dots, \mathcal{D}_k$ of similar size

for $i = 1$ to k do

Train h_i on $\mathcal{D} \setminus \mathcal{D}_i$

Compute **test** error $\mathcal{E}_i(h_i)$ on non- \mathcal{D}_i data

return $\frac{1}{k} \sum_{i=1}^k \mathcal{E}_i(h_i)$

Note: Cross-Validation evaluates the **algorithm** that produces the hypotheses h , but does NOT evaluate the hypotheses h produced.

The Perceptron

Algorithm

Def. (Perceptron – Rosenblatt (1962))

Training Dataset: $\mathcal{D}_n = \{(x^{(i)}, y^{(i)}) : x^{(i)} \in \mathbb{R}^{d \times 1}, y^{(i)} \in \{\pm 1\}\}_{i=1}^n$

Binary Classifier: $h(x; \theta, \theta_0)$; **Parameters:** $\theta \in \mathbb{R}^{d \times 1}, \theta_0 \in \mathbb{R}$

Iterations: τ steps.

PERCEPTRON (τ, \mathcal{D}_n) :

$\theta_0 = 0$, and $\theta = [0 \ 0 \ \dots \ 0]^T$

for $t = 1$ to τ do

for $i = 1$ to n do

if $y^{(i)}(\theta^T x^{(i)} + \theta_0) \leq 0$ then

$\theta = \theta + y^{(i)} x^{(i)}$

$\theta_0 = \theta_0 + y^{(i)}$

return (θ, θ_0)

Note: If alg does not enter IF loop for n iterations: $\mathcal{E}_n(h) = 0$!

Prop: If data is linearly separable, Perceptron will find it.

Offset

Thm. (Dim. Increase)

Given $\theta_0, \theta = [\theta_1 \ \dots \ \theta_d]^T$, and $x = [x_1 \ \dots \ x_d]^T$:

Let $\theta_{\text{new}} = [\theta_1 \ \dots \ \theta_d \ \theta_0]^T$, and $x_{\text{new}} = [x_1 \ \dots \ x_d \ 1]^T$

$\implies \theta_{\text{new}}^T \cdot x_{\text{new}} = \theta^T \cdot x + \theta_0$

Note: Perceptron with offset \Leftrightarrow Perceptron though origin in dim $d+1$

PERCEPTRON-THROUGH-ORIGIN (τ, \mathcal{D}_n) :

$\theta = [0 \ 0 \ \dots \ 0]^T$

for $t = 1$ to τ do

for $i = 1$ to n do

if $y^{(i)}(\theta^T x^{(i)}) \leq 0$ then

$\theta = \theta + y^{(i)} x^{(i)}$

return θ

SVM-GRADIENT-DESCENT ($\theta_{\text{init}}, \theta_{0,\text{init}}, \eta, J, \varepsilon$) :

```

 $\theta^{(0)} = \theta_{\text{init}}$  ;  $\theta_0^{(0)} = \theta_{0,\text{init}}$  ;  $t = 0$ 
while  $|J(\theta^{(t)}, \theta_0^{(t)}) - J(\theta^{(t-1)}, \theta_0^{(t-1)})| \geq \varepsilon$  do
     $t = t + 1$ 
     $\theta_0^{(t)} = \theta_0^{(t-1)} + \eta \cdot \frac{1}{n} \sum_{i=1}^n \mathbb{I} \left\{ y^{(i)} \cdot (\theta^{(t-1)T} x^{(i)} + \theta_0^{(t-1)}) < 1 \right\} y^{(i)}$ 
     $\theta^{(t)} = \theta^{(t-1)} + \eta \cdot \frac{1}{n} \sum_{i=1}^n \mathbb{I} \left\{ y^{(i)} \cdot (\theta^{(t-1)T} x^{(i)} + \theta_0^{(t-1)}) < 1 \right\} y^{(i)} x^{(i)} + \lambda \theta^{(t-1)}$ 
    return  $(\theta^{(t)}, \theta_0^{(t)})$ 

```

Note: λ does not appear in θ_0 updates: don't regularize the offset! only the slope needs to be regularized (made simpler). Offset \approx scaling

Stochastic Gradient Descent

Idea: If gradient is in form of a sum: $f(\mathcal{D}_n; \Theta) = \sum_{i=1}^n f_i(\mathcal{D}_n^{(i)}; \Theta)$
Don't take 1 small step in the direction of the gradient
→ randomly select 1 term in sum and take tiny step in that direction. You will move in the direction of the gradient on average.

STOCHASTIC-GRAD-DESCENT ($\Theta_{\text{init}}, \eta, f, \nabla_{\Theta} f_1, \dots, \nabla_{\Theta} f_n, T$) :

```

 $\Theta^{(0)} = \Theta_{\text{init}}$ 
for  $t = 1$  to  $T$  do
    Randomly get  $i \in \{1, \dots, n\} \implies$  Focus on  $(x^{(i)}, y^{(i)}) \in \mathcal{D}_n^{(i)}$ 
     $\Theta^{(t)} = \Theta^{(t-1)} - \eta(t) \cdot \nabla_{\Theta} f_i(\mathcal{D}_n^{(i)}; \Theta^{(t-1)})$ 
return  $\Theta^{(t)}$ 

```

Thm. (Convex Optimization) If $J(\Theta)$ is convex:

$$\sum_{t=1}^{\infty} \eta(t) = \infty \text{ & } \sum_{t=1}^{\infty} \eta(t)^2 < \infty \implies \text{SGD converges a.s. to optimal } \Theta$$

Note: For SGD, η must decrease! Ex: $\eta \sim 1/t$

Note: • If f non-convex with many local optima: BGD gets trapped!
→ taking samples from the gradient at some point Θ can make you bounce off of local optima.

• May not want to optimize f perfectly (overfitting of training set)
→ SGD can get lower test error (but probably not lower training error) than BGD.

Regression

Data: $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$, with $x^{(i)} \in \mathbb{R}^{d \times 1}$, $y^{(i)} \in \mathbb{R}$.

Hypothesis: $h: \mathbb{R}^d \rightarrow \mathbb{R}$; Linear: $h(x; \theta, \theta_0) = \theta^T x + \theta_0$

Non-Linear Feature Transformation ϕ : $h(x; \theta, \theta_0) = \theta^T \phi(x) + \theta_0$

Loss Function: Squared-Error $L(\text{guess} - \text{actual})^2$

Objective: Mean SE $J(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^n (\theta^T x^{(i)} + \theta_0 - y^{(i)})^2$

Solution: $(\theta^*, \theta_0^*) = \operatorname{argmin}_{\theta, \theta_0} J(\theta, \theta_0)$

OLS Analytical Solution

Def. (Ordinary Least Squares) Linear hypothesis + MSE

Assumptions $x^{(i)}$ augmented with row of 1's \Rightarrow can ignore θ_0 .

$X \in \mathbb{R}^{d \times n}$: $X = [x^{(1)} | \dots | x^{(n)}]$, $x^{(i)} = [x_1^{(i)} \dots x_d^{(i)}]^T \in \mathbb{R}^{d \times 1}$

$Y = [y^{(1)} \dots y^{(n)}] \in \mathbb{R}^{1 \times n}$

$W = X^T \in \mathbb{R}^{n \times d}$ and $T = Y^T \in \mathbb{R}^{n \times 1}$

Thm. (OLS Solution)

• **Objective:** $J_{\text{OLS}}(\theta) = \frac{1}{n} (W\theta - T)^T (W\theta - T)$

• **Gradient:** $\nabla_{\theta} J_{\text{OLS}} = \frac{2}{n} W^T (W\theta - T) \stackrel{!}{=} 0$

• **Solution:** $\theta_{\text{OLS}}^* = (W^T W)^{-1} W^T T = (X X^T)^{-1} X Y^T$

Regularization

Def. (Ridge Regression)

• **Objective:** $J_{\text{Ridge}}(\theta) = \frac{1}{n} \sum_{i=1}^n (\theta^T x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2$

Warning: In what follows: θ_0 included in θ !

• **Gradient:** $\nabla_{\theta} J_{\text{Ridge}} = \frac{2}{n} W^T (W\theta - T) + 2\lambda\theta \stackrel{!}{=} 0$

• **Solution:** $\theta_{\text{Ridge}}^* = (W^T W + n\lambda \mathbf{1}_{d \times d})^{-1} W^T T$

Note: $(W^T W + n\lambda \mathbf{1}_{n \times n})$ invertible when $\lambda > 0$

Def. (Bias-Variance Tradeoff) Hypoth $h \in \mathcal{H}$ contributes to errors on test data by:

• **Structural Err:** (Bias) $\nexists h \in \mathcal{H}$ describing data well (\mathcal{H} too simple)

• **Estimation Err:** (Variance) Not enough data to pick good $h \in \mathcal{H}$

Note: Regularization: $\lambda \nearrow \Rightarrow$ Bias \nearrow & Variance \searrow

Optimize via Gradient Descent

Idea: Closed form solution $\sim O(d^3)$ to invert $W^T W$: too long!

Def. (Ridge Gradient Descent/SGD)

• **Objective:** $J_{\text{Ridge}}(\theta) = \frac{1}{n} \sum_{i=1}^n (\theta^T x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2$

• **Gradients:** $\nabla_{\theta} J_{\text{Ridge}} = \frac{2}{n} \sum_{i=1}^n (\theta^T x^{(i)} + \theta_0 - y^{(i)}) x^{(i)} + 2\lambda\theta$

$\nabla_{\theta_0} J_{\text{Ridge}} = \frac{\partial}{\partial \theta_0} J_{\text{Ridge}} = \frac{2}{n} \sum_{i=1}^n (\theta^T x^{(i)} + \theta_0 - y^{(i)})$

Thm. (Convex Optimization) OLS & Ridge are convex objectives!

→ unique minimum & guaranteed BGD convergence to optimum for small enough step size η

Neural Networks I

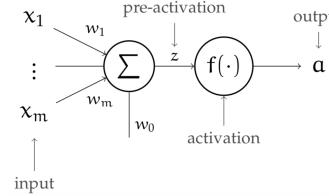
View 1: NN = Application of SGD for classification/regression with a potentially very rich hypothesis class \mathcal{H}

View 2: NN = Brain-inspired network of neuron-like computing elements that learn distributed representations

View 3: NN = Method to build applications that make predictions with huge data in very complex domains

Basic Element

Def. (Neuron/Unit/Node):



Input: $x \in \mathbb{R}^m$ **Output:** $a = f(z) \in \mathbb{R}$

Weights: $w \in \mathbb{R}^m$ **Offset:** $w_0 \in \mathbb{R}$

Pre-Activation: $z = w^T x^{(i)} + w_0 = \sum_{j=1}^m w_j x_j^{(i)} + w_0$

Activation Function: $a = f(z) = f(w^T x^{(i)} + w_0)$

Def. (Objective Function) **Note:** Use in BGD/SGD!

$J(\mathcal{D}_n; w, w_0) = \sum_{i=1}^n L(NN(x^{(i)}; w, w_0), y^{(i)})$

$NN(\cdot)$ = NN output ; $L(\text{guess}, \text{actual})$ = Loss Function

Note: Linear Classifiers with Hinge Loss + Linear Regressions with Quadratic loss → 1 neuron with $f(x) = x$

Example: 1 Neuron, $f(z) = e^z$ & $L(g, a) = (g - a)^2$:

$J(w, w_0) = \sum_{i=1}^n (\exp(\sum_{j=1}^m w_j x_j^{(i)} + w_0) - y^{(i)})^2$

$\nabla_w J = 2 \sum_{i=1}^n x^{(i)} \exp(w^T x^{(i)} + w_0) (\exp(w^T x^{(i)} + w_0) - y^{(i)})$

$\nabla_{w_0} J = 2 \sum_{i=1}^n \exp(w^T x^{(i)} + w_0) (\exp(w^T x^{(i)} + w_0) - y^{(i)})$

Networks

Def. (NN) Input = $x \in \mathbb{R}^m$; Output = $a \in \mathbb{R}^n$ (n Output Units)

Def. (Feed-Forward NN) Acyclic (neuron input $\perp\!\!\!\perp$ of own output) + Data flows one way: inputs → outputs + $NN(\cdot)$ = composition of each neuron's function

Single Layer: Linear Hypothesis

Def. (Layer) Set of non-connected units with:

Input: $x \in \mathbb{R}^m$; **Output/Activation:** $a \in \mathbb{R}^n$

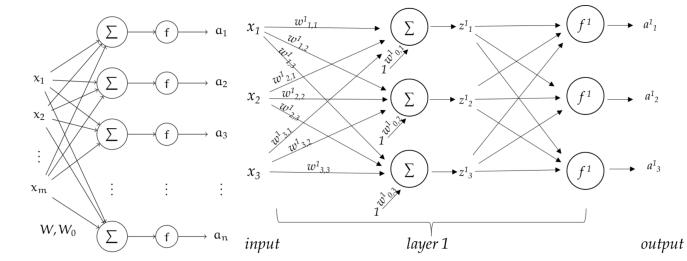
Fully Connected: Same inputs to each layer $x_1^{(i)}, \dots, x_m^{(i)}$

Layer's Weight Matrix: $W^l \in \mathbb{R}^{m \times n}$ **Offset Vect:** $W_0^l \in \mathbb{R}^{n \times 1}$

Layer Inputs: $X \in \mathbb{R}^{m \times 1}$ **Pre-Activat^o:** $Z = W^T X + W_0 \in \mathbb{R}^{n \times 1}$

Activation: $A = f(Z) = f(W^T X + W_0) \in \mathbb{R}^{n \times 1}$ applied element-wise

Note: Single Layer \iff Linear Hypotheses!



Multiple Layers

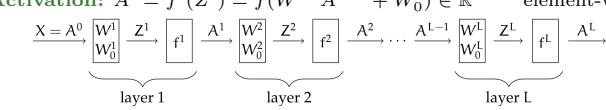
Def. (Layers) Set of non-connected units with:

Layer's Weight Matrix: $W^l \in \mathbb{R}^{m^l \times n^l}$ **Offset:** $W_0^l \in \mathbb{R}^{n^l \times 1}$

Layer Inputs: $A \in \mathbb{R}^{m^l \times 1}$; m^l inputs & $n^l = m^{l+1}$ outputs

Pre-Activat^o: $Z^l = W^{lT} A^{l-1} + W_0^l \in \mathbb{R}^{n^l \times 1}$

Activation: $A^l = f^l(Z^l) = f(W^{lT} A^{l-1} + W_0^l) \in \mathbb{R}^{n^l \times 1}$ element-wise



Activation Functions

Thm. (No Activation) If $f^l(Z) = Z \forall l$ (so activation = identity)

$\implies A^L = W^{L^T} W^{(L-1)^T} \dots W^{1^T} X = W^{\text{Total}^T} X$

$\implies A^L$ = a linear function of X ! One layer is enough

Example: (Activation Functions)

Step Function: $\text{step}(z) = \mathbb{I}\{z \geq 0\}$ (discontinuity → hard for BGD)

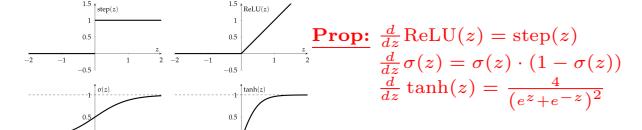
Rectified Linear Unit: $\text{ReLU}(z) = \max(0, z)$

Sigmoid/Logistic Function: $\sigma(z) = \frac{1}{1+e^{-z}} \in [0, 1] \sim \text{probability}$

Hyperbolic Tangent: $\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}} \in [-1, 1]$

Softmax Funct^o: $\text{softmax}(z) = \begin{bmatrix} e^{z_1} / \sum_{i=1}^n e^{z_i} \\ \dots \\ e^{z_n} / \sum_{i=1}^n e^{z_i} \end{bmatrix} \in [0, 1]^n, \forall Z \in \mathbb{R}^n$

Prop: $\text{softmax}(z) \sim \text{a prob. distribution } (\cdot) \sum \text{components} = 1$



Note: ReLU: use in hidden layers
Sigmoid: binary classification output
Softmax: multi-class classification output

Error Back-Propagation

Note: We will frame it for SGD; For BGD do $\sum_i \nabla_W L^{(i)}$

Idea: (Goal) Compute $\nabla_W L(NN(x; W), y)$, $W := \{W^{(l)}, W_0^{(l)}\}_{l=1}^L$

Proposition (Final Layer) loss = $L(NN(x; W), y) = L(A^L, y)$

$$\Rightarrow \frac{\partial \text{loss}}{\partial W^L} = \frac{\partial Z^L}{\partial W^L} \frac{\partial A^L}{\partial Z^L} \frac{\partial \text{loss}}{\partial A^L} = \underbrace{A^{L-1}}_{m^L \times n^L} \left(\frac{\partial \text{loss}}{\partial Z^L} \right)^T$$

$$(\because A^L = f^L(Z^L) \quad ; \quad Z^L = W^{L^T} A^{L-1} + W_0^L)$$

$$\text{Proposition (Any Layer)} \quad \frac{\partial \text{loss}}{\partial W^l} = \underbrace{A^{l-1}}_{m^l \times n^l} \left(\frac{\partial \text{loss}}{\partial Z^l} \right)^T$$

$$\text{Proposition (First Layer)} \quad \text{Note: } m^{l+1} = n^l$$

$$\frac{\partial \text{loss}}{\partial Z^1} = \underbrace{\frac{\partial A^1}{\partial Z^1}}_{n^1 \times 1} \underbrace{\frac{\partial Z^2}{\partial A^1}}_{n^1 \times n^1} \underbrace{\frac{\partial A^2}{\partial Z^2}}_{m^2 \times n^2} \dots \underbrace{\frac{\partial A^{L-1}}{\partial Z^{L-1}}}_{n^{L-1} \times n^{L-1}} \underbrace{\frac{\partial Z^L}{\partial A^{L-1}}}_{m^L \times n^L} \underbrace{\frac{\partial A^L}{\partial Z^L}}_{n^L \times n^L} \underbrace{\frac{\partial \text{loss}}{\partial A^L}}_{n^L \times 1}$$

Note: (Dimensions) Recall that:

$$\bullet \frac{\partial \text{loss}}{\partial A^L} = n^L \times 1$$

$$\bullet \frac{\partial Z^l}{\partial A^{l-1}} = W^l = m^l \times n^l \quad \text{and} \quad \frac{\partial Z^l}{\partial W^l} = A^{l-1}, \frac{\partial Z^l}{\partial W_0^l} = \mathbb{I}_{n^l \times n^l}$$

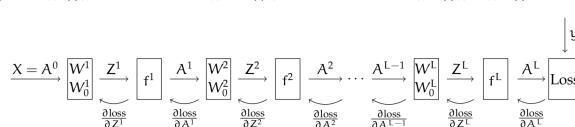
$$\bullet \frac{\partial A^l}{\partial Z^l} = W^l = n^l \times n^l$$

Thm. (First Layer) We finally get:

$$\frac{\partial \text{loss}}{\partial Z^1} = \underbrace{\frac{\partial A^1}{\partial Z^1}}_{n^1 \times 1} \underbrace{\frac{\partial Z^2}{\partial A^1}}_{n^1 \times n^1} \underbrace{\frac{\partial A^2}{\partial Z^2}}_{m^2 \times n^2} \dots \underbrace{\frac{\partial A^{L-1}}{\partial Z^{L-1}}}_{n^{L-1} \times n^{L-1}} \underbrace{\frac{\partial Z^L}{\partial A^{L-1}}}_{m^L \times n^L} \underbrace{\frac{\partial A^L}{\partial Z^L}}_{n^L \times n^L} \underbrace{\frac{\partial \text{loss}}{\partial A^L}}_{n^L \times 1}$$

Thm. (Any Layer: Error Back-Propagation) We finally get:

$$\frac{\partial \text{loss}}{\partial Z^l} = \underbrace{\frac{\partial A^l}{\partial Z^l}}_{n^l \times 1} \underbrace{\frac{\partial W^{l+1}}{\partial A^l}}_{n^l \times n^{l+1}} \underbrace{\frac{\partial A^{l+1}}{\partial Z^{l+1}}}_{m^{l+1} \times n^{l+1}} \dots \underbrace{\frac{\partial W^L}{\partial Z^L}}_{m^L \times n^L} \underbrace{\frac{\partial A^L}{\partial Z^L}}_{n^L \times n^L} \underbrace{\frac{\partial \text{loss}}{\partial A^L}}_{n^L \times 1}$$



Note: Like a “blame propagating”: how much is each module to blame?

Forward: input \rightarrow output

Backward: input, output, $\partial \text{loss}/\partial \text{output} \rightarrow \partial \text{loss}/\partial \text{input}$

Weight Grad: input, $\partial \text{loss}/\partial \text{output} \rightarrow \partial \text{loss}/\partial W$

Training

Idea: (Goal) SGD for a Feed-Forward NN

SGD-NEURAL-NETS ($\mathcal{D}_n, T, L, (m^1, \dots, m^L), (f^1, \dots, f^L)$) :

```
for l = 1 to L do           ▷ Initialize  $W^l$  matrix and  $W_0^l$  vector
     $W_{ij}^l \sim \mathcal{N}(0, \frac{1}{m^l})$ 
     $W_{0j}^l \sim \mathcal{N}(0, 1)$ 
for t = 1 to T do
    i =  $\text{Unif}\{1, \dots, n\}$ ;  $A^0 = x^{(i)}$ 
    for l = 1 to L do
         $Z^l = W^{l^T} A^{l-1} + W_0^l$ 
         $A^l = f^l(Z^l)$ 
        loss =  $L(A^L, y^{(i)})$ 
    end
    for l = L to 1 do
        if l = L then
             $\frac{\partial \text{loss}}{\partial A^l} = \frac{\partial \text{loss}}{\partial A^L}$ 
        else
             $\frac{\partial \text{loss}}{\partial A^l} = \frac{\partial \text{loss}}{\partial Z^{l+1}} \frac{\partial Z^{l+1}}{\partial A^l}$ 
             $\frac{\partial \text{loss}}{\partial Z^l} = \frac{\partial \text{loss}}{\partial A^l} \frac{\partial A^l}{\partial Z^l}$ 
             $\frac{\partial \text{loss}}{\partial W^l} = \frac{\partial \text{loss}}{\partial Z^l} \frac{\partial Z^l}{\partial W^l} = \frac{\partial \text{loss}}{\partial Z^l} A^{l-1}$ 
             $\frac{\partial \text{loss}}{\partial W_0^l} = \frac{\partial \text{loss}}{\partial Z^l} \frac{\partial Z^l}{\partial W_0^l} = \frac{\partial \text{loss}}{\partial Z^l}$ 
             $W^l = W^l - \eta(t) \cdot \frac{\partial \text{loss}}{\partial W^l}$ 
             $W_0^l = W_0^l - \eta(t) \cdot \frac{\partial \text{loss}}{\partial W_0^l}$ 
        end
    end
end
```

```
for l = L to 1 do
    if l = L then
         $\frac{\partial \text{loss}}{\partial A^l} = \frac{\partial \text{loss}}{\partial A^L}$ 
    else
         $\frac{\partial \text{loss}}{\partial A^l} = \frac{\partial \text{loss}}{\partial Z^{l+1}} \frac{\partial Z^{l+1}}{\partial A^l}$ 
         $\frac{\partial \text{loss}}{\partial Z^l} = \frac{\partial \text{loss}}{\partial A^l} \frac{\partial A^l}{\partial Z^l}$ 
         $\frac{\partial \text{loss}}{\partial W^l} = \frac{\partial \text{loss}}{\partial Z^l} \frac{\partial Z^l}{\partial W^l} = \frac{\partial \text{loss}}{\partial Z^l} A^{l-1}$ 
         $\frac{\partial \text{loss}}{\partial W_0^l} = \frac{\partial \text{loss}}{\partial Z^l} \frac{\partial Z^l}{\partial W_0^l} = \frac{\partial \text{loss}}{\partial Z^l}$ 
         $W^l = W^l - \eta(t) \cdot \frac{\partial \text{loss}}{\partial W^l}$ 
         $W_0^l = W_0^l - \eta(t) \cdot \frac{\partial \text{loss}}{\partial W_0^l}$ 
    end
end
return  $\{(W^1, W_0^1), \dots, (W^L, W_0^L)\}$ 
```

Neural Networks II

Parameter Optimization

Idea: Take advantage of structure of Loss Function + Hypothesis Class to improve optimization of weights.

Batches

Assumptions Objective: $J(\mathcal{D}_n; W) = \sum_{i=1}^n L(h(x^{(i)}; W), y^{(i)})$

Idea: Update Rules:

- **BGD:** $W = W - \eta \sum_{i=1}^n \nabla_W L(h(x^{(i)}; W), y^{(i)})$
- **SGD:** $W = W - \eta(t) \nabla_W L(h(x^{(i)}; W), y^{(i)})$, $i \sim \text{Unif}\{1, \dots, n\}$
- **Size k Mini-Batch:** $W = W - \eta \sum_{i=1}^k \nabla_W L(h(x^{(i)}; W), y^{(i)})$

Note: BGD = too much computation if n large
SGD = if data has a lot of variability, η must be very small to average moving over competing directions \Rightarrow slow

Def. (Mini-Batch of size k) Between BGD and SGD!

- Select k datapoints uniformly at random from data \mathcal{D}_n
- Update over the batch: $W = W - \eta \sum_{i=1}^k \nabla_W L(h(x^{(i)}; W), y^{(i)})$

Note: $k = n \Rightarrow$ BGD ; $k = 1 \Rightarrow$ SGD

Idea: Randomly shuffle data \mathcal{D}_n , and cut into $\sim n/k$ batches of size k .

MINI-BATCH-SGD (NN, \mathcal{D}_n, k) :

```
n = length( $\mathcal{D}_n$ )
while not terminated do
    Run RANDOM-SHUFFLE ( $\mathcal{D}_n$ )
    for i = 1 to  $n/k$  do
        Run BATCH-GRADIENT-UPDATE ( $NN, \mathcal{D}_n[(i-1)k : ik]$ )
```

Adaptive Step-Size

Goal: Choose step size η to avoid exploding/vanishing gradients in back-propagation due to multiplication

\Rightarrow Use independent step-size parameter for each weight + update based on local view of how the gradients updates have performed
 \Rightarrow Need different η in each layer & for each weight

Running Averages:

Idea: Estimate a weighted avg of a sequence of data

Input: Sequence a_1, a_2, \dots, a_T

Output: Sequence of running avg values A_0, A_1, \dots, A_T

Def. (Running Avg) $\begin{cases} A_0 = 0 \\ A_t = \gamma A_{t-1} + (1 - \gamma) a_t \end{cases}$ with $\gamma \in (0, 1)$

Example: (Moving Avg) Cst $\gamma_t = \gamma$: $A_T = \sum_{t=0}^T \gamma^{T-t} \cdot (1 - \gamma) a_t$
Also called **Decaying Average**!

Note: Later inputs a_t have more effect on A_t than early inputs

Example: (Equal-Weighted Avg) $\gamma_t = \frac{t-1}{t}$: $A_T = \frac{1}{T+1} \sum_{t=0}^T a_t$

Momentum:

Idea: Special case of running avg to describe strategies to compute η
Momentum = “avg” recent grad updates to avoid bounce back & forth
 \Rightarrow Smoothening of trajectory

Def. (Momentum) Start with $V_0 = 0$:

- Def 1: $\begin{cases} V_t = \gamma \cdot V_{t-1} + \eta \cdot \nabla_W J(W_{t-1}) \\ W_t = W_{t-1} - V_t \end{cases}$ Def 1 \iff Def 2: use $\eta := \tilde{\eta} \cdot (1 - \gamma)$
- Def 2: $\begin{cases} M_t = \gamma \cdot M_{t-1} + (1 - \gamma) \cdot \nabla_W J(W_{t-1}) \\ W_t = W_{t-1} - \tilde{\eta} \cdot M_t \end{cases}$

Note: Def 2: gradient update with step size $\tilde{\eta}$ on Moving Avg of gradients with param γ

Prop: V_t bigger in dims of ∇_θ that consistently have same sign

Note: Need to set 2 extra params: η & $\gamma \rightarrow$ usually $\gamma \sim 0.9$

Prop: γ small \Rightarrow no averaging/usual no-momentum method

Multi-Class Classification & Log Likelihood

Assumptions $K = \# \text{ Classes}$

Labels: 1-hot vector $y = [y_1, \dots, y_K]^T$ with $y_k = 1$ if $x_k \in \text{Class } k$

Output layer: Activation function $f^l = \text{Softmax}$.

So Output $a^L = [a_1, \dots, a_K]^T \in [0, 1]^K \sim \text{Prob Dist over all } K \text{ classes}$

Idea: (Goal) We want to **maximize**:

$\mathbb{P}(\text{NN assigns correct class to all inputs}) = \prod_{i=1}^n \prod_{k=1}^K (a_k^{(i)})^{y_k^{(i)}}$

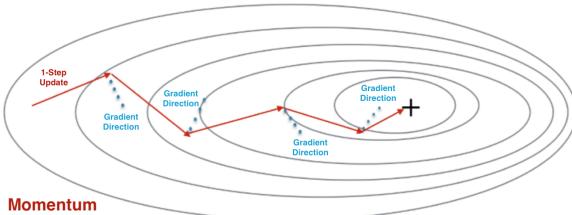
Note: Maximize the log!

Def. (Negative Log Likelihood Multiclass – NLLM)

$L_{NLLM}(a^{(i)}, y^{(i)}) := - \sum_{k=1}^K y_k^{(i)} \log a_k^{(i)}$

Objective: $J(\mathcal{D}_n; W) := \sum_{i=1}^n L_{NLLM}(a^{(i)}, y^{(i)})$

Note: If $k = 2$: $y_2 = 1 - y_1$ and $a_2 = 1 - a_1$.

**Adadelta:**

Idea: BGD/SGD can be slow if $J(W)$ has a plateau (flat region)

Goal: Pick large η in flat parts; small η in steep parts
 \Rightarrow Care about magnitude of gradient

Def. (Adadelta) In each layer of the NN:

$$\begin{cases} g_{t,j} = \nabla_W J(W_{t-1})_j \\ G_{t,j} = \gamma \cdot G_{t-1,j} + (1 - \gamma) \cdot g_{t,j}^2 \Rightarrow \text{large when steep/small when flat} \\ W_{t,j} = W_{t-1,j} - \frac{\eta}{\sqrt{G_{t,j} + \varepsilon}} \cdot g_{t,j} \Rightarrow \text{use } \varepsilon \text{ to avoid blow-ups} \end{cases}$$

$G_{t,j}$ = Moving Avg of square (ignore sign) of grad's j^{th} component

Adam:

Idea: Today's default method to manage step sizes η in NN
 \Rightarrow Combine momentum + Adadelta ideas!

Warning: Adam might actually violate SGD convergence conditions!
 Paper: arxiv.org/abs/1705.08292

Def. (Adam)

Step 1: Moving Avg of Grad & $(\text{Grad})^2 \sim \text{mean/var of weight } j \text{ 's grad}$

$$\begin{cases} m_0 = v_0 = 0 \\ g_{t,j} = \nabla_W J(W_{t-1})_j \\ m_{t,j} = B_1 \cdot m_{t-1,j} + (1 - B_1) \cdot g_{t,j} \\ v_{t,j} = B_2 \cdot v_{t-1,j} + (1 - B_2) \cdot g_{t,j}^2 \end{cases}$$

Step 2: Bias-Correction for initializing $m_0 = v_0 = 0$

$$\begin{cases} \hat{m}_{t,j} = \frac{1}{1 - B_1^t} \cdot m_{t,j} \\ \hat{v}_{t,j} = \frac{1}{1 - B_2^t} \cdot v_{t,j} \end{cases}$$

Step 3: Gradient update $W_{t,j} = W_{t-1,j} - \eta \cdot \frac{1}{\sqrt{\hat{v}_{t,j} + \varepsilon}} \hat{m}_{t,j}$

Suggestion: Use $B_1 = 0.9$, $B_2 = 0.999$, and $\varepsilon = 10^{-8}$

Note: Adam is not very sensitive to (B_1, B_2, ε) parameters

Implement: Store matrix for $(m_t^l, v_t^l, g_t^l, (g_t^l)^2)$ in each layer of NN.

Regularization

Recap: Optimize loss on training data \Rightarrow overfitting possible
 Large Deep NN: a lot of data & params \sim actually not major issue
 Still want to make sure that minimizing training loss generalizes well

Methods For Ridge Regression**Weight Decay:**

Goal: Penalize the norm of all the weights \sim Ridge Regression

Def. (Weight Decay) Objective:

$$J(W) = \sum_{i=1}^n L\left(\text{NN}(x^{(i)}; W), y^{(i)} \right) + \frac{1}{2} \lambda \|W\|^2, \quad \lambda \in (0, 1)$$

Proposition (Weight Updates) Using weight decay: $(\eta \in (0, 1))$

$$W_t = W_{t-1} (1 - \lambda \eta) - \eta \cdot \nabla_W L\left(\text{NN}(x^{(i)}; W_{t-1}), y^{(i)} \right)$$

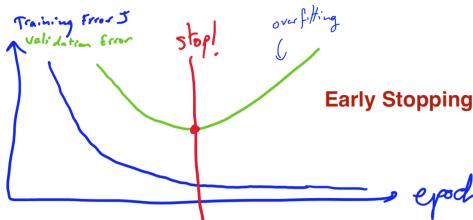
$$(\therefore) \quad W_t = W_{t-1} - \eta \cdot \left[\nabla_W L\left(\text{NN}(x^{(i)}; W_{t-1}), y^{(i)} \right) + \lambda W_{t-1} \right]$$

Note: "Decay" W_{t-1} by a factor of $(1 - \lambda \eta)$ + take a gradient step

Early Stopping: (Equivalent to Weight Decay)

Def. (Epoch) One pass through training (or could be more)

Def. (Early Stopping) At each epoch: evaluate loss of current W on a validation set. \Rightarrow Stop when error starts to increase systematically



Noise Addition [Bishop]: (Equivalent to Weight Decay)
 Def. (Noise Addition) Perturb the $x^{(i)}$ values of training data;
 Add small amount of $N(0, \sigma_{\text{err}}^2)$ noise before each gradient computation
 Note: Overfitting \searrow as training data perturbed on each training step

Dropout

Idea: Instead of perturbing data each time: perturb the **network**!

Note: Good for Deep Learning + robust to data perturbation

Def. (Dropout) During training phase, for each training example:
 For each unit \rightarrow randomly pick $a_j^l \sim \text{Ber}(1 - p) \Rightarrow a_j^l \in \{0, 1\}$
 With prob $p: a_j^l = 0 \Rightarrow$ no contrib to output & no grad update for unit
 After training: \times all weights by $p \Rightarrow$ achieve same avg activation levels

Proposition (Dropout Implementation) During Training,

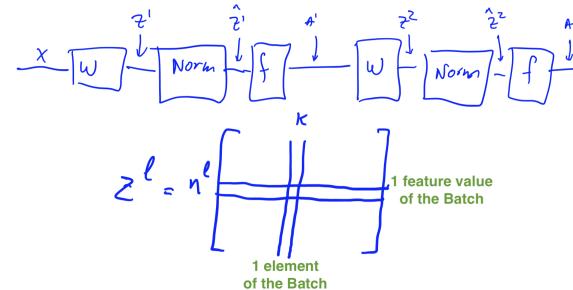
- On each Forward Pass: $a^l = f(z^l) * d^l$, with $d^l \in \{\text{Ber}(1 - p)\}^{n^l}$
- Backwards Pass: no further changes (depends on a^l anyway)
 \rightarrow Common to set $p = 0.5$ **Note:** $*$ = componentwise \times

Batch Normalization

Ref. arxiv.org/abs/1502.03167

Idea: (Covariate Shift) Input: $X \sim \mathbb{P}_X \Rightarrow$ Output $A \sim \mathbb{P}_{X,W}$
 But A = input to 2^{nd} layer of NN
 \Rightarrow Distrib of input changes each time we update weights W
 \Rightarrow Standardize input values for each mini-batch!

Note: Batch Normalization has regularization effect!
 Each mini-batch of data is mildly perturbed: overfitting \searrow



Def. (Batch Norm) Add Batch-Norm Unit before activation module
 $Z^l \in \mathbb{R}^{n^l \times K} \rightarrow \hat{Z}^l \in \mathbb{R}^{n^l \times K} \rightarrow A^l \in \mathbb{R}^{m^l \times K} \quad (K = \text{batch size})$

Forward Pass: For each feature value $i \in \{1, \dots, n^l\}$,

$$\begin{cases} \mu_i^l = \frac{1}{K} \sum_{j=1}^K Z_{ij}^l \Rightarrow \mu^l \in \mathbb{R}^{n^l \times 1} \\ \sigma_i^l = \sqrt{\frac{1}{K} \sum_{j=1}^K (Z_{ij}^l - \mu_i^l)^2} \Rightarrow \sigma^l \in \mathbb{R}^{n^l \times 1} \\ \Rightarrow \hat{Z}_{ij}^l := G_i^l \cdot \frac{Z_{ij}^l - \mu_i^l}{\sqrt{(\sigma_i^l)^2 + \varepsilon}} + B_i^l \quad (G_i^l \text{ & } B_i^l \text{ allows for flexibility}) \end{cases}$$

Backwards Pass: Given $\frac{\partial L}{\partial Z^l}$, want $\begin{cases} \frac{\partial L}{\partial Z^l} \text{ (back-propagation)} \\ \frac{\partial L}{\partial G^l} \text{ & } \frac{\partial L}{\partial B^l} \text{ (} W^l \text{ grad updates)} \end{cases}$

$$\begin{cases} \frac{\partial L}{\partial G^l} = \sum_{k=1}^K \frac{\partial L}{\partial \hat{Z}_{ik}^l} \cdot \frac{\partial \hat{Z}_{ik}^l}{\partial G_i^l} = \sum_{k=1}^K \frac{\partial L}{\partial \hat{Z}_{ik}^l} \cdot \frac{Z_{ik}^l - \mu_i^l}{\sqrt{(\sigma_i^l)^2 + \varepsilon}} \\ \frac{\partial L}{\partial B^l} = \sum_{k=1}^K \frac{\partial L}{\partial \hat{Z}_{ik}^l} \cdot \frac{\partial \hat{Z}_{ik}^l}{\partial B_i^l} = \sum_{k=1}^K \frac{\partial L}{\partial \hat{Z}_{ik}^l} \end{cases}$$

Thm. (Back-Propagation) Given $\frac{\partial L}{\partial \hat{Z}^l}$: (using $\delta_{ij} = \mathbb{I}\{i = j\}$)

$$\frac{\partial L}{\partial Z_{ij}^l} = \sum_{k=1}^K \frac{\partial L}{\partial \hat{Z}_{ik}^l} \cdot G_i^l \cdot \frac{1}{K \cdot \sigma_i^l} \cdot \left(\delta_{jk} \cdot K - 1 - \frac{(Z_{ik}^l - \mu_i^l)(Z_{ij}^l - \mu_i^l)}{(\sigma_i^l)^2} \right)$$

(\because) \exists dependencies across the batch, not across the unit outputs:

$$\frac{\partial L}{\partial Z_{ij}^l} = \sum_{k=1}^K \frac{\partial L}{\partial \hat{Z}_{ik}^l} \cdot \frac{\partial \hat{Z}_{ik}^l}{\partial Z_{ij}^l}$$

Convolutional Neural Networks**Filters****Max Pooling****Typical Architecture****Sequential Models****State Machines****Markov Decision Processes (MDP)****MDP: Finite-Horizon Solutions****Evaluating a Given Policy****Finding an Optimal Policy****MDP: Infinite-Horizon Solutions****Evaluating an Optimal Policy****Finding an Optimal Policy****Theory****Reinforcement Learning****Bandit Problems****Sequential Problems (SQP)****Model-Based RL****Policy Search****SQP: Value Function Learning & Q-Learning****Q-Learning****Function Approximation****Fitted Q-Learning****Recurrent Neural Networks****RNN Model****Sequence-to-Sequence RNN**

[Back-Propagation Through Time](#)

[Training a Language Model](#)

[Vanishing Gradients & Gating Mechanisms](#)

[Simple Gated Recurrent Networks](#)

[Long Short-Term Memory](#)

[Recommender Systems](#)

[Content-Based Recommendations](#)

[Collaborative Filtering \(CF\)](#)

[CF Optimization](#)

[Alternating Least Squares](#)

[Stochastic Gradient Descent](#)

[Non-Parametric Methods](#)

[Introduction](#)

[Trees](#)

[Regression](#)

[Building a Tree](#)

[Pruning](#)

[Classification](#)

[Bagging & Random Forests](#)

[Nearest Neighbor](#)