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Fundamental Theory of Asset Pricing

Introduction
Definition (Positive Approach) Minimal restrictions of no
arbitrage. Somewhat unique to finance due to wealth of data.

Definition (Normative Approach) Micro-founded model of
portfolio choice ⇒ Decision rules ⇒ equilibrium restrictions on prices.

This Course: Demand for + Valuation of risky assets.

Ignores: frictions that make supply of risky assets hard (corpor. fin.)

• Financial frictions

• Capital structure: firm choice of debt/equity

• Moral hazard/separation of ownership and control (exec comp)

• Banking and liquidity

Definition (Gross Return) Change in value of a $1 initial
investment

Rt+1 =
Payoff(t+1)

Payoff(t)
=
Xt+1

Pt

• investor receives cash flow Xt+1 without taking an action.

• can choose to liquidate position at market price Xt+1.

• can choose to reinvest cash flows at market price Pt+1.

Definition (Net Return) rt = 1 + Rt.

Definition (Excess Return) = rt − rf .

Definition (Compound Return) Πkj=1Rt+j = Return from t to
t+ k where cash flows are reinvested.

Definition (Returns Stats) .

Arithmetic: R̄AT = 1
T

∑T
t=1 Rt (Artithm < Geom by Jensen)

Note: Arithmetic: quoted, not meaningful

Geometric: R̄GT =
[∏T

t=1 Rt
]1/T

= exp
(

1
T

∑T
t=1 logRt

)
Note: Geometric: captures compounding

Sample Variance: σ̂2 := 1
T−1

∑T
t=1

[
Rt − 1

T

∑T
j=1 Rj

]2
Stand. Dev/Volatility: σ̂ =

√
σ̂2

Skewness, Kurtosis: Higher moments.

Nonparametric: histograms, bootstrap, Monte-Carlo, resampling. . .

Definition (Risk Premium) πt = E
[
rt − rf

]
.

Definition (Sharpe Ratio) SRt =
E
[
rt−rf

]
Std(rt−rf )

=
E[return]
Unit Risk .

Properties (Log Plot) logR(t+ k)− logR(t) =
∑k
i=t+1 logRi

= logR(t+ 1, t+ k) cumulative log return over holding period [t, t+ k].

Vector Notation: a = [a1, . . . , an]′ ∈ Rn

a ≥ 0: ai ≥ 0 ∀i (a∈ Rn+)

a > 0: ai ≥ 0 ∀i AND ai > 0 for at least one i.

a� 0: ai > 0 ∀i (a∈ IntRn+)

Arrow-Debreu State-Space Framework
Environment: (M States) m = 1, . . . ,M .

Two Dates: t = 0, 1

t = 1 State Space: Ω = {ω1, . . . , ωM} =⇒ M states

Prob. Measure: P over Ω, pm := P (ωm),
∑M
m=1 pm = 1.

Agents: (K Agents) k = 1, 2, . . . , K

Resources: .

• Information: For now, assume all prior info in same P.
Assume Rational E & Homog. Beliefs

• Endowment: ∃ one perishable good in economy.

ek := [ek0 , e
k
1
′
]′ = [ek0 , e

k
11, . . . , e

k
1M ]′ ∈ R1+M

ek0 at t = 0 ek1ω at t = 1 & state ω.

Standard Portfolio Problem: ek0 > 0, ek
1 = 0.

Nonnegative Endowment: ek ∈ R1+M
+ (ek ≥ 0).

• Production Technology: Pay $I now, get fω(I) at t = 1 &
state ω =⇒ y0(I) = −I; y1(I) = [f1(I), . . . , fM (I)]′

Assume: fω(0) = 0 (invest nothing get nothing)
& f ′ω(I) ≥ 0 , f ′′ω (I) ≤ 0 (Increasing but Diminishing returns)

Choices: Consumption + Resource Alloc.

• Consumption: ck := [ck0 , c
k
1
′
]′ = [ck0 , c

k
11, . . . , c

k
1M ]′ ∈ R1+M

ck0 = e0 − P ′θ (t = 0) (How much I eat today)

ck1ω = e1 +D1θ|ω (t = 1, state ω) (How much I eat tomorrow)

• Consumption Plan: ck := [ck0 , c
k
1
′
]

• Consumption Path: [ck0 , c
k
1ω] =⇒ What we Observe!

• Consump. Set: C := {ck : feas.} ⊆ R1+M ; Usual: C = R1+M
+

Prop: C is a closed + convex subset of R1+M .

• Budget Set: Set of consumption plans given by purchasing θ:
B(e, {D1, P}) := {c ≥ 0 : θ ∈ RN , ck0 = e0 − P ′θ, ck1 = e1 +D1θ}

Preferences: How they make choices.

Rational Preference: binary relat &k over consump C = R1+M
+ s.t.

• Complete: a, b ∈ C =⇒ a &k b or b &k a or both.

• Reflexive: a ∈ C =⇒ a &k a

• Transitive: a &k b & b &k c =⇒ a &k c

Continuous Pref &: ⇔ ∀{an} → a, {bn} → b ∈ C : an & bn ⇒ a & b
Utility Function: uk : C → R, s.t.
a, b ∈ C : a & b ⇐⇒ uk(a) ≥ uk(b).
Strictly Monotonic: uk(c) > uk(c′), ∀c > c′.
Theorem (Debreu) X ⊆ Rn : & rational + cont
=⇒ & can be represented by a continuous utility function.

Securities Market: (N Assets) n = 1, . . . , N
Security: Financial Claim yielding payoff/dividend D1n at t = 1.

Payoff Vector: D1n = [D11, . . . , D1M ]′ ∈ RM , D1ω at t = 1 state ω.

Market Structure: D1 = [D11, . . . , D1N ] = [D1ωn]M×N ∈ RM×N
Price: Pn ∈ R : price of security n at t = 0.
Price Vector: P = [P1, . . . , PN ]′ ∈ RN at t = 0.

Portfolio: θ = [θ1, . . . , θN ] ∈ RN⇒ costt=0 = −P ′θ, payofft=1 = D1θ.
Short Sale: θj < 0 : borrow |θj | of asset j(t = 0), pay θjD1ωj(t = 1).

B Matrix: B := [−P ′, D]′ ∈ R(M+1)×N .

Proposition c = e+ B
′
θ = [e0 − P ′θ, [e1m +

∑N
n=1 Dn1mθn]′M×1]

Frictionless Market:

• No access + transactions costs + taxes

• No position constraints + market impact + divisible goods

• No information asymmetry

Market Equilibrium:

Optimization: maxθ uk(ck) s.t. ck ∈ B(e, {D1, P}): Sol◦ = θk(P, e).
ex: M = N = 1, D1 = 1, P = 1/(1 + r) → borrow/lend at rate r.
ex: M = N = 2, e0 > 0, e1 = 0, c0 fixed, wealth w0 = Diag (e0 − c0)

→ choose c1ω = w0D1Diag
(
P−1

)
θ = w0R1θ s.t. θ′1N = 1.

Market Equilibrium: Supply = Demand
Market Clearing:

∑K
k=1 θ

k(P, ek) = 0 i.e.
∑K
k=1 c

k =
∑K
k=1 e

k.

=⇒ Gives equilibrium prices P (D1, P, {uk, ek}Kk=1).

Pareto Dominance: Allocation ck Pareto Dominates ck
′

⇐⇒ uk(ck) ≥ uk(ck
′
)∀k and strict for one k.

Pareto Optimality: Allocation ck is Pareto Optimal
⇐⇒ ck feas. (

∑
k c

k =
∑
k e

k) & 6 ∃ a feasible P.Dominating alloc.

Arbitrage

Replication:

Exclude Asset n: θ\n = [θ1, . . . , θN ]′ ∈ RN−1 portfolio excluding θn,

D\n = [D′1, . . . , D
′
N ]′ ∈ RM×(N−1) payoff matrix excluding Dn.

Definition (Redundant Security) Security n is redundant
⇐⇒ ∃θ\n s.t. D\nθ\n = Dn

Definition (Our Setup) rank (D1) = N ≤M :
=⇒ drop redundant security (but possibly incomplete market).

Definition (Payoff Space C1)

C1(D1) := {c1 = D1θ ∈ RM : θ ∈ RN} = span (D1, . . . , DN ) ⊆ RM
Prop: dimC1 = N

Definition (Payoff Replicat◦) Payoff c1 = replicated/financed by θ

⇐⇒ c1 ∈ C1(D1) ⇐⇒ ∃ portfolio θ ∈ RN s.t. c1 = D1θ

Definition (Complete Market) A securities market is complete

⇐⇒ ∀ payoff c1 ∈ RM , ∃θ ∈ RN s.t. Dθ = c1.
⇐⇒ span (D1, . . . , DN ) = RM
⇐⇒ rank (D) = M (i.e., need N = M)

Definition (State-Contingent Claims/Arrow-Debreu Securities)

State-ω contingent claim eω ∈ RM has payoff 1 in state ω, 0 otherwise.

Definition (Arrow-Debreu Market/Economy) .
A securities market with a complete set of A-D securities:

DAD = IN×N = IM×M (as N = M)
Prop: An AD Market is complete.



By Zied Ben Chaouch

Definition (State Price Vector φ) .
φω = price of eω at t = 0.
Vector: φ = [φ1, . . . , φM ]′ ∈ RM .

Set of State Prices: Φ =
{
φ ∈ RM : consistent with NA

}
(P ′ = Φ′D)

Prop: Payoff c = [c1, . . . , cM ]′ =
∑M
ω=1 eωcω

Prop: Price of Portfolio θ = [θ1, . . . , θM=N ]′: P =
∑N
n=1 φnDn (?)

Definition (Arbitrage) .
Given market with structure D, price vector P :
Arbitrage = trading strategy θ at t = 0 s.t.

1. Require no cash inflow at t = 0: P ′θ ≤ 0

2. Generates positive cash flow at t = 1: Dθ ≥ 0

AND one of the ineqs is strict.

Note: Arbitrage = rely on prices+payoffs NOT probabilities
Arbitrage = scalable (frictionless market) + available to everyone

Principles (No Arbitrage) Frictionless market =⇒ 6 ∃ arbitrage

Proposition (Arbitrage Existence) ⇐⇒ ∃θ ∈ RN s.t. Bθ > 0.
Type 1: Bθ = [0, > 0]′ free at t = 0, maybe paid at t = 1

Type 2: Bθ = [> 0,≥ 0]′ paid at t = 0, maybe paid at t = 1

Proposition .
Market Equilib + 1 agent w/ strictly monotonic pref =⇒ 6 ∃ arbitrage
(∵) invest ∞ amount in it =⇒ no equilibrium
Warning: 6 ∃ arbitrage 6=⇒ Market Equilibrium

Example: (Covered Interest Parity (CIP) Formula)

• Borrow ¤ today at int. rate r¤.
• Convert ¤ to $ at the current ex-
change rate S.
• Invest $ at US interest rate r$.
=⇒ Must have SAME price F as

forward contract: F = S × 1+r$
1+r¤

Note: (Limits to Arbitrage) .
Pure arbitrage ∃ only in perfect markets. In practice:
• Need capital + posting collateral.
• Shorting is costly! People are worried about default risk
• Imperfect Information + Market Frictions =⇒ arbitrage
strategies are capital intensive + risky:

- Arbitrageurs use leverage to invest more than their own $.
- Can get margin calls before the arbitrage takes place.
- Short-selling is risky! No limited liability (∞ losses)

CIP Violations in the Data:
- Arbitrage is associated with opportunity costs
- Regulations =⇒ only financial institutions can close the CIP arb.
- High capital requirements for trading to close CIP arb. (very high
costs at quarter ends)

Fundamental Thm of Asset Pricing (FTAP)
Valuation Operator:

Definition (Asset Pricing Model) Mapping from a securitys payoff
vector d to its price P: P = V (d).

Definition (Pricing/valuation operator) V : RM ⊇ C1(D)→ RM
d 7→ P = V (d).

Theorem Under No Arbitrage: d, d1, d2 ∈ C1(D), a, b ∈ R
Positivity d > 0 =⇒ V (d) > 0, and d = 0 =⇒ V (d) = 0

Law of One Price d1 = d2 =⇒ V (d1) = V (d2)

Monotonicity d1 ≥ d2 =⇒ V (d1) ≥ V (d2)

Linearity V (a · d1 + b · d2) = aV (d1) + bV (d2)

Theorem (FTAP) 6 ∃ arbitrage in market
⇐⇒ ∃φ� 0 s.t. P ′ = φ′D (i.e., P = D′φ).

φ ∈ RM+1 = State Price Vector implied from D and P .

Note: Given φ, can price any traded asset (don’t need P or Q).

Proposition Redundant securities =⇒ φ is not unique.
May find φ that are not � 0. If 6 ∃φ� 0 =⇒ ∃ arbitrage.

Definition (DCF/PV Formula) Pn = φ′Dn =
∑
ω φωDnω

Proposition φ� 0 =⇒ all AD prices are arbitrage-free.

Note: φω = price of a hypothetical AD security (whose payoff may or
may not be achievable).
If φ large in bad states =⇒ insurance.

Theorem (Stiemke’s Lemma) ∃φ� 0 (∈ Rm) s.t. P ′ = φ′D
⇐⇒ 6 ∃θ ∈ Rn s.t. Bθ > 0.

Example: (Incomplete Market) D = (1, 2, 3)′, P = 1 :
=⇒ Φ =

{
φ� 0 : φ′D = 1

}
= {φ� 0 : φ1 + 2φ2 + 3φ3 = 1} .

Price D2 = (2, 2, 2)′ : P2

Example: (Incomplete Market II) Find price Pb of new security
with payoff b s.t. b /∈ span (D1) (i.e., not redundant):
Pb =

{
φb : φ� 0, P ′ = φ′D1

}
i.e., inf

φ∈Φ�0
φb < Pb < sup

φ∈Φ�0
φb

If Security b is redundant: Pb = {Pθ : θ ∈ Rn, D1θ = b} = φb.

Special Case − Complete Markets:

Proposition Complete market =⇒ φ = (D−1)′P .

Theorem No Arbitrage =⇒ ∃!φ ∈ RM s.t. P ′ = φ′D.
Furthermore, ∃ portfolio θ ∈ RN s.t. φ = Dθ.
Note: If D has redundant columns: θ not unique BUT φ is unique
Proposition Complete Market + No Arbitrage =⇒ ∃!φ� 0.

State-Price Density/Risk Neutral Measure

Definition (Risk-Free Asset) Payoff: D1 = 1M ∈ RM i.e.,

D1ω = 1, ∀ω ∈ Ω, with price P1 = 1

1+rf
=
∑M
ω=1 φω = φ′1M .

Definition (Risk-Neutral Measure) Q = {qω : ω ∈ Ω}, where

qω = φω∑
ω′ φω′

= (1 + rf )φω

Prop: qω > 0,
∑
ω qω = 1 and Q ∼ P (agree on zero-measure sets).

Idea: Probabilities/riskiness hidden in state prices φ.
=⇒ Q = normalized state prices (6= P : tied to data/observed).

Risk-Neutral Pricing:

1. P ′ = φ′D =⇒ get state prices φ.

2. Get RF rate: 1 + rf = 1∑
ω φω

.

3. Construct Q =
{
qω = φω∑

ω′ φω′
= (1 + rf )φω

}
.

4. Price any asset with payoff vector Dn:

Pn =
EQ[Dn]

1+rf
= 1

1+rf

∑
ω qωDnω.

5. Get Expected Return: 1 + r̄n = (1 + rf )
EP[Dn]

EQ[Dn]
.

Definition (State-Price Density/Stochastic Discount Factor η)
.
Idea: Pn = φ′Dn =

∑
φωDnω =

∑
pω

φω
pω
Dnω

=⇒ ηω = φω
pω
, ∀ω ∈ Ω. Prop: ηω > 0, η ∈ RM , EP [η] = 1

1+rf
.

=⇒ η = PAIN INDEX! η small → good state; η big → bad
(how worried people are about the future)
Note: η is hard to observe (unless market is complete)

Proposition (P ∼ Q) EP [X] = 1

1+rf
EQ
[
X
η

]
, & φω = qω

1+rf
= pωηω

Note: pi > qi =⇒ payoffs in state i are very valuable

Idea: η removes the probabilities from φ: it will add them with EP [·].
SPD/SDF Pricing: you must know P = {pω}:

1. P ′ = φ′D =⇒ get state prices φ.

2. Get SPD/SDF: η = φω
pω

.

3. Price any asset with payoff vector Dn:
Pn = EP [ηDn] =

∑
ω pωηωDnω .

4. Get Expected Return: 1 + r̄n =
EP[Dn]
Pn

=
EP[Dn]

EP[ηDn]
.

5. Get RF rate: 1 + rf = 1

EP[η]
.

Theorem (Representation Thm) ∃ a positive pricing operator V

⇐⇒ ∃ risk-neutral measure Q & riskless asset rf

⇐⇒ ∃ SPD/SDF η � 0.

Discounted Cash Flow (DCF)/Present Value (PV) Formula:

Definition (Discount Rate/Expected Rate of Return)

1 + r̄n =
EP[Dn]
Pn

=
EP[Dn]

EP[ηDn]
= (1 + rf )

EP[Dn]

EQ[Dn]
=

EQ[Dn/η]

EQ[Dn]
.

Definition (Rate of Return) Random r̃n : rnω = Dnω
Pn
− 1

Note: r̃1ω = rf , EP [r̃n] = r̄n, and 1 + r̃n = Dn
Pn

Definition (Risk Premium) πn = EP
[
r̃n − rf

]
= r̄n − rf .

Proposition (DCF/PV) Pn =
EP[Dn]
1+r̄n

=
∑
ω pωDnω
1+r̄n

P1 =
∑
ω φω = 1

1+rf
and r̄1 =

EP[D1]
P1

− 1 = 1
P1
− 1 = rff

Proposition (Risk Premium)

EP [1 + r̃n] = (1 + rf )
(

1− CovP (η, 1 + r̃n)
)

=⇒ πn = EP
[
r̃n − rf

]
= −(1 + rf )CovP

(
η, r̃n − rf

)
and EQ [r̃n] = rf ∀n −→ EQ

[
r̃n − rf

]
= 0 ∀n

(∵) Pn = EP [ηDn] =⇒ 1 = EP [ηDn/Pn] = EP [η(1 + r̃n)]

1 = EP [η]EP [(1 + r̃n)] + CovP (η, 1 + r̃n)
Idea: Asset performing well in bad times earns lower returns.
“−” sign: if make money in bad state (insurance): pay for it!

Corollary (Irrelevance of Idiosyncratic Risk) .
Decomposition: Dn = Proj(Dn|η) + εn where ε ⊥ η & E [ε] = 0.
Pj = Pk ⇐⇒ Proj(Dj |η) = Proj(Dk|η)

Note: ρ (η,Dn) = 0 =⇒ r̄n = rf (but r̃n 6= rf ) and Pn =
EP[Dn]

1+rf

Example: (Log-Normal Case) log η and log(1 + r̃n) jointly normal:

=⇒ EP [log(1 + r̃n)]− log(1 + rf ) + 1
2 VarP (log(1 + r̃n)) =

−CovP (log η, log(1 + r̃n))

Theorem (Hansen-Jagannathan Bound) Sharpe Ratio of asset n:

SRn :=
EP
[
r̃n−rf

]
√

VarP(r̃n−rf )
≤
√

VarP(η)

EP[η]

(∵) πn
1+rf

= −CovP
(
η, r̃n − rf

)
≤ −(−1) ·

√
VarP (η)

√
VarP (r̃n − rf )

Definition (Entropy of a r.v.) X > 0:

LP(X) = log EP [X]− EP [logX] ≥ 0.

Theorem (Entropy Bound) LP(η) ≥ EP [log(1 + r̃n)]− log(1 + rf ).
Note: Can observe SR > 0.8 =⇒ η VERY volatile

Many models generate σ(η) & LP(η) much lower than bound



By Zied Ben Chaouch

FTAP: Corporate Finance

Assumptions .
(1) Not restricted to financial assets (allow agents to invest in real
productive opportunities)
(2) Securities market: frictionless + complete

=⇒ complete set of AD securities traded with price vector φ� 0
(3) Endowment e = [e0, e

′
1]′.

(4) Firms = only defined by the production technologies they possess
y0: investment into the production opportunity at t = 0
y1ω = yω(y0), ∀ω ∈ Ω: output from production at t = 1, state ω
Assume: yω(0) = 0, y′ω(·) ≥ 0 and y′′ω(·) < 0 (diminishing returns)
Production Vector: y1 = [y11, . . . , y1M ]′

(5) Agent wants to maximize utility u(c)

Definition (Investment NPV) v = φ′y − y0 =
∑
ω φωyω(y0)− y0

Definition (Agent’s t = 0 Wealth)
w = e0 − y0 + φ′(e1 + y1) = e0 + φ′e1 + v

Definition (Agent’s Optimization Pb) maxy0,c0,c1 u([c0, c
′
1]′)

Solution: s.t. w = c0 + φ′c1
(1) Choose y0 to maximize t = 0 wealth (NPV of production)

FOC (dv/dy0): 1 = φ′y′(y0) = EP [ηω · y′ω(y0)
]

= 1

1+rf
EQ [y′ω(y0)

]
y(·) concave =⇒ v(·) concave =⇒ unique solution
⇒ Optimal prod◦ decision = indep of agent’s consumption decisions!
Only depends on prod function & state prices
(2) Choose c to maximize utility u(c)

Corporate Investment Decisions:

Production opportunities are owned by firms:
j = 1, . . . , F firms with Prod Tech yj(yj0) ∈ RM .
skj = share of firm j owned by agent k:

∑
k skj = 1, ∀j

Firm’s investment NPV at t = 0: vj = φ′yj(yj0)− yj0, ∀k
Agent k’s wealth: wk = ek0 + φ′ek1 +

∑
j skjvj

Firm’s investment decision: if firm j owned only by agent k,

Decision on firm’s investment = maximize vj : φ
′yj(yj0)

!
= 1

Decision is indep of agent’s endowment & preferences
⇒ firm’s optimal investment decision indep of who owns it.

Theorem (Maximize Current Market Value) Frictionless +
Complete market: ∃ unanimity among firm’s shareholders on
investment decisions (maximize NPV) separate ownership/mngmt!

Financing Decisions (Capital Structure):

Definition (Financing Decision) How firm raises funds for investmt

Definition (Capital Structure) Mix of securities issued by firm

Assumptions Firm financed by debt & equities:
(1) d0 = D debt issued at t = 0
(2) e0 = E shareholder’s equity at t = 0
So: y0 = d0 + e0
(3) d1 & e1 ∈ RM (debt & equity at t = 1): y1 = d1 + e1

Proposition D = φ′d1, E = φ′e1 and V = D + E = φ′y1.
NPV(Equity)= φ′(y1 − d1)− e0 = φ′y1 − (d0 + e0) = φ′y1 − y0

Theorem (Modigliani-Miller) Frictionless + Complete market:
firm’s NPV determined only by investment decisions (indep of cap
structure)

Example: (Labor vs Wage) Firm: hire L labor at wage W
=⇒ produce output Y (L) = ALα (α < 1), logA ∼ N(Ā, σ2

A)

Can borrow at rf , and Log-SDF: logM = δ + ε , ε ∼ N(0, σ2
ε)

Assume correlation between logA and ε: σAε.

Firm’s problem: max
L
−WL+ E [MALα] =⇒ L =

(
αE[MA]
W

)1/(1−α)
,

where: E [MA] = exp
(
δ + Ā+ 1

2σ
2
A +

1

2
σ

2
ε + σAε︸ ︷︷ ︸

ignore if σ2
ε=0

)

Math Tricks

Theorem (Iterated Expectations) X a r.v., F1 ⊂ F2
more info

E [X|F1] = E [E [X|F2] |F1]

Definition (Normal Distribution) X ∼ N(µ, σ2):

PDF: fX(x) = 1√
2πσ2

exp

(
− (x−µ)2

2σ2

)
.

Transfo: Y = aX + b =⇒ Y ∼ N(aµ+ b, a2σ2).

MGF: MX(t) = E
[
e−tX

]
= exp

(
µt+ 1

2σ
2t2
)

Prop: X ⊥ Y =⇒ MX+Y (t) = MX(t) ·MY (t)

Definition (Multivariate Normal) X ∼ N(µ,Σ), X,µ ∈ Rn :

PDF: fX(x) = 1

(2π)n/2
√

det(Σ)
exp

(
− 1

2 (x− µ)′Σ−1(x− µ)
)
.

MGF: MX(t) = E
[
e−

∑n
i=1 tiXi

]
= exp

(
t′µ+ 1

2 t
′Σt
)
, with t ∈ Rn.

Correlation: X,Y jointly normal with correl ρ:
MX+Y (t) = exp

(
(µ1 + µ2)t+ 1

2 (σ2
1 + σ2

2 + 2ρ)t2
)

=⇒ (X + Y ) ∼ N(µ1 + µ2, σ
2
1 + σ2

2 + 2ρ)

Example: (CARA: Normal) U = −E [exp (−aZ)], Z ∼ N(µ, σ2)
=⇒ U = −MZ(a) = −exp

(
−aµ+ 1

2a
2σ2
)

;− 1
a logU = µ− 1

2aσ
2

Example: (CRRA: Log-Norm) U = −E
[
Z1−γ
1−γ

]
, logZ ∼ N(µ, σ2)

=⇒ U = 1
1−γM(1−γ)Z(1) = 1

1−γ exp
(
(1− γ)µ+ 1

2 (1− γ)2σ2
)

FTAP: Fundamental Value of a Stocks
Cash Flows: Xt = Dt + Pt (dividends + share price)

Returns: Rt =
Xt
Pt

=
Dt+Pt
Pt

.

Assumptions No Arbitrage holds ∀t =⇒ ∃ηt+k∀k
Theorem (PV of Future Stock Payoffs) .

Pt = EP
t [ηt+1(Pt+1 +Dt+1)]

=⇒ Pt = EP
t

[∑∞
k=1 ηt:t+kDt+k

]
with ηt:t+k :=

∏k
j=1 ηt+j

& Pt = EQ
t

[∑∞
k=1

Dt+k

(1+rf )k

]
(∵) Pt = Et

[∑T
k=1(ηt+1 · · · ηt+k)Dt+k

]
+ Et [ηt+1 · · · ηt+TPt+T ]→0

Definition (kth Period Return)

EP
t

[
R

(k)
t:t+k

]
=

EPt [Dt+k]
EPt [ηt:t+kDt+k]

=
Et[Payoff]

Price

=⇒ P
(k)
t = EP

t [ηt:t+kDt+k] = EP
t [Dt+k]/EP

t

[
R

(k)
t:t+k

]
−→ Price of 1 divident k periods in future

Theorem (DCF of Future Stock Payoffs) .

Pt = EP
t

[∑∞
k=1 ηt:t+kDt+k

]
=
∑∞
k=1 EP

t [Dt+k]/EP
t

[
R

(k)
t:t+k

]
FTAP: Fixed Income Securities
Idea: Assume default-free securities (e.g., US T-Bills)

Definition (Bond) Coupon payments + principal/par/face value
No coupon −→ Zero-Coupon/Pure-Discount Bond

Zero-Coupon Bonds (ZCB):

PN,t = price of N-period bond at time t that pays FV = 1$ at t+N .
Proposition Any N-period default-free coupon bond = portfolio of
zero coupon bonds: Pricet =

∑N
j=1 CFt+j · Pj,t

Assumptions η = η(s) depends on state variable at t
(1st order) Markov State Variables: st ∈ {1, . . . , S}.
π(st+1, st) := P (st+1 = s|st, past) = P (st+1 = s|st)
=⇒ PN,t = PN (st) (price depends on maturity + state only)

No Arbitrage: Price = E [discounted payoffs]

Proposition (1 period) Take N = 1, state st = j:
P1,t = P1(j) = Et [ηt+1]

(∵) P1(j) =
∑S
s=1 P (st+1 = s|st = j) η(s) · (1$) =

∑S
s=1 π(s, j)η(s)

Proposition (N periods) .
PN,t = Et [ηt+1PN−1,t+1] = Et [ηt+1 × · · · × ηt+N ] = Et [ηt:t+N]

(∵) P2(st) =
∑S
s=1 π(st+1, st)P1(st+1) = Et [ηt+1Et+1 [ηt+2]]

Yield Curve (YC)/ Term Structure of Interest Rates:

Definition (YTM) For ZCB, Yield To Maturity = per-period gross
discount rate → geom. avg of cumul return (hold ZCB until maturity)

YN,t =
[

1
PN,t

]1/N
= [payoff/price]1/N −→ PN,t =

[
1

YN,t

]N
Prop: Prices & Yields/returns move in opposite directions

Definition (Log-Framework) pN,t = logPN,t, yN,t = log YN,t
Prop: yN,t = − 1

N pN,t ⇐⇒ pN,t = −N · yN,t

Definition (Elasticity) of the bond price w.r.t. the yield:
dpN,t
dyN,t

=−N⇒long maturity ZCB is more sensitive to same change in y

Properties .
• YTM = avg rate of return over the life of the loan:

YTM across maturities → different units.
• ZCB prices: PN,t = exchange rate between 1$ today & 1$ at t+N .

• P2,t
P1,t

=
1$t+2
1$t+1

low =⇒ cheap to transfer cash from t+ 1 to t+ 2

Ex: recession at t which will end by t+ 2

Proposition (YC Recipe) PN,t=Et [ηt:t+N ]: YC⇔moments of SDF
(1) Define State Variables: xt (data ⇒ need at least 3).
(2) Assume SDF ηt = η(xt) or Log SDF mt = log ηt.
(3) Give law of motion for xt under P (use π(xt+1, xt))

OR Give law of motion for xt under Q (use rf )
(4) Sol◦: Iterate on pricing eq. PN (xt) = Et [η(xt+1)PN−1(xt+1)|xt]
(5) Guess pN,t = log(PN,t) ∼ affine in xt & find coeffs

Example: (Vasicek model, 1977) .
(1) One State Variable: xt
(2) Assume Log SDF: mt+1 = log(ηt+1) = −xt − 1

2

(
λ
σ

)2 − λ
σ εt+1.

(3) AR(1) under P: xt+1 = µ+ φxt + σεt+1; with φ < 1, εt
iid∼ N(0, 1)

.
(4) Sol◦: Iterate on pN,t = log Et [exp (mt+1 + pN−1,t+1) |xt]
Use: (xt+1|Ft) ∼ N(µ+ φxt, σ) and (mt+1|Ft) ∼ N(−x− 1

2

(
λ
σ

)2
, λσ )

p1,t = log Et [exp (mt+1)] = −xt − 1
2

(
λ
σ

)2
+ 1

2

(
λ
σ

)2
= 0− 1 · xt

=⇒ Short Rate: xt = y1t = log(1 + rf ) −→ mean-reverting AR(1)
p2,t = log Et [exp (mt+1 + p1,t+1)] = log Et [exp (mt+1 − xt+1)]

= −(1 + φ)xt +
[
− 1

2

(
λ
σ

)2
+ µ+ 1

2

(
λ
σ + σ

)2]
= A2 + B2 · xt

.
(5) Guess pn,t = An + Bn · xt:
pn,t = An + Bn · xt =⇒ pn+1,t = An+1 + Bn+1 · xt with:

Bn = −1 + φBn−1 = − 1−φn
1−φ

An = An−1 + Bn−1(µ− λ) + 1
2B

2
n−1σ

2

Example: (Cox-Ingersoll-Ross, 1985) .
(1) One State Variable: xt
(2) Assume Log SDF: mt+1 = −xt − 1

2

(
λ
σ

)2
xt −

(
λ
σ

)
x0.5
t εt+1.

(3) Under P: xt+1 = µ+ φxt + σx0.5
t εt+1; with φ < 1, εt

iid∼ N(0, 1)
.
(4) Sol◦: Iterate on pN,t = log Et [exp (mt+1 + pN−1,t+1) |xt]
Use: (mt+1|xt) = cst−

(
λ
σ

)
x0.5
t εt+1 and (pN−1,t+1|xt) ⊥ εt+1

⇒(mt+1+pN−1,t+1|xt)∼N(Et[mt+1+pN−1,t+1], SDt[mt+1+pN−1,t+1])
=⇒ pN,t = Et [mt+1 + pN−1,t+1] + 1

2 Vart [mt+1 + pN−1,t+1]

=⇒ pN,t = Et [mt+1 + pN−1,t+1] + 1
2 Vart [mt+1]

+ 1
2 Vart [pN−1,t+1] + Covt (mt+1, pN−1,t+1)

=⇒ p1,t = Et [mt+1] + 1
2 Vart [mt+1] therefore:

pN,t = p1,t+Et [pN−1,t+1]+ 1
2 Vart [pN−1,t+1]+Covt (mt+1, pN−1,t+1)

=⇒ p1,t = −xt − 1
2

(
λ
σ

)2
xt + 1

2

(
λ
σ

)2
xt = −xt

=⇒ Short Rate: xt = y1t = log(1 + rf ) −→ mean-reverting AR(1)
.
(5) Guess pn,t = An + Bn · xt, therefore:
pn+1,t = p1,t + Et [pn,t+1] + 1

2 Vart [pn,t+1] + Covt (mt+1, pn,t+1)

= −xt + [An + Bn(µ+ φxt)] + 1
2

[
B2
nσ

2xt
]

+ [−Bnλxt]
= [An + µBn]︸ ︷︷ ︸

An+1

+ [−1 + (φ− λ)Bn + (1/2)σ
2
B

2
n]︸ ︷︷ ︸

Bn+1

xt
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Proposition (Bond Pricing with Real Returns) .

Real: SDF=ηrt , Price=P rt −→ P rn,t = Et
[
ηrt+1P

r
n−1,t+1

]
Nominal: SDF=ηt, Price=Pt and Price Level: Πt

=⇒ Pn,t = P rn,tΠt = Et
[
ηrt+1Pn−1,t+1

Πt
Πt+1

]
ηt+1 = ηrt+1

Πt
Πt+1

=: ηrt+1
1

1+πt+1

Proposition (Fisher Eq.) If inflation risk uncorrelated with risk:
1

1+it
(1 + Et[πt+1]) = 1

1+rt
=⇒ rt ≈ it − Et[πt+1]

(∵) Take expectation above: Et [ηt+1(1 + πt+1)] = Et
[
ηrt+1 · 1

]
FTAP: Options

Definition (Derivative Security) Contract whose value derives
from the price of another security or observable outcome.

Definition (Underlying Asset) Xt = Payoff of asset at time T > t,
s.t. f(XT ) = payoff of derivative security at T > t, f(·) known.
Note: Payoff at T > t can be path dependent: f(Xt+1, . . . , XT )

Proposition (Derivative Price) Given η: PDt = Et [ηt:T · f(XT )]
Note: Often, derivative = redund asset ⇒ use replicating portfolio

Definition (Long Forward Contract) Obligation to buy an
underlying asset at a pre-specified price K at time T .
Prop: Payoff = ST −K

Definition (Credit Default Swaps) Insure debt-holder against
losses from default.

Definition (Interest Rate Swaps) Insure investor against interest
rate risk: exchange (fixed set of cash payments)

←→ (floating payments tied to interest rates)

Proposition (Arrow-Debreu) • AD security = derivative security
(∵) Underlying Asset = is the state of nature −→ see HW2-Q3b

• ANY Derivative = Portfolio of AD securit: PD =
∑M
ω=1 φω · f(Xω)

Options:

Definition (Stock/Underlying Asset) .
S0 = price at t = 0 S1 (or S) = payoff at t = 1.

Definition (European Call/Put Option) On the stock:
Contract giving buyer the right to buy/sell stock from/to seller of
option at t = T & price K.
T = 1: maturity/exercise date ; K = strike/exercise price
Payoff: Call c1 = [S1 −K]+, Put p1 = [K − S1]+.

Example: Payoff Depends on Price of Underlying Asset at t = 1
Straddle (V) = call(K) + put(K): [S −K]+ + [K − S]+
Butterfly (Λ) = call(K − δ) - 2 calls(K) + put(K + δ):
[S −K + δ]+ − 2[S −K]+ + [K − S − δ]+
? ? ? Let D0 = required debt payment on firm:
Equity = Call option on assets of firm: E = [A−D0, 0]+
Debt = RF Bond − put option on assets: D = D0 − [D0 − A]+

Definition (Intrinsic Value) Call: I = S −K ; Put: I = K − S
In-The-Money: I > 0, S > K (call), K > S (put)

At-The-Money: I = 0, S = K (call), K = S (put)

Out-of-The-Money: I > 0, S < K (call), K < S (put)

Pricing Properties:

Proposition (Arbitrage Pricing Properties of Options) .
c(S,K) = V (c1): call price ; p(S,K) = V (p1): put price
• Option prices are ≥ 0: c(S,K) ≥ 0 and p(S,K) ≥ 0.
• c(S,K)↘ in K and p(S,K)↗ in K.
(∵)
∀K1 > K2 =⇒ c(S,K1) = V ([S −K1]+) ≤ V ([S −K2]+) = c(S,K2)
• c(S,K) and p(S,K) are convex in K.
(∵) c(S,K) =

∑
ω φω(Sω −K)+

=⇒ c(S, λK + (1− λ)K′) =
∑
ω φω(Sω − λK − (1− λ)K′)+

≤
∑
ω φω

[
λ(Sω −K)+ + (1− λ)(Sω −K′)+

]
Proposition (Portfolio of Options) Let θ > 0: portf of N assets;
Price S = [S1, . . . , SN ]′ > 0 ; Strike K = [K1, . . . , KN ] > 0. Then,

c(S′θ,K′θ) ≤
∑N
i=1 θic(Si, Ki) and p(S′θ,K′θ) ≤

∑N
i=1 θip(Si, Ki)

Note: Option on a portfolio ≤ Portf of options on assets in portfolio
(∵) Payoff of option on portfolio = [(S −K)′θ]+ = [

∑
i(Si −Ki)θi]+

≤
∑
i[Si −Ki]+θi = payoff of portfolio of options on each assets

Proposition (Option Price Bounds) S ≥ c(S,K)

If ∃ riskless bond rf :
[
S − K

1+rf

]
+
≤ c(S,K) ≤ S

(∵) Long 1 stock; Short K bonds.

Payoff = S −K (t = 1) ; Price = S −K/(1 + rf ) (t = 0)

c1 = [S −K]+ ≥ S −K =⇒ c(S,K) = V (c1) ≥ S −K/(1 + rf )

Proposition (Put-Call Parity) If ∃ riskless bond rf :
No Dividend: c(S,K) + K

1+rf
= p(S,K) + S

With Dividend: D at t = 0: c(S,K) + K

1+rf
+D = p(S,K) + S

(∵) • Long 1 Call(K) + K Bonds
• Long 1 Put(K) + 1 Stock

=⇒ SAME Payoff at t = 1: K (if S ≤ K) and S (if S > K)

Early Exercise:

Definition (American Option) Buyer can exercise at any t ≤ T .
Price: C(S,K) American Call , P (S,K) American Put
Assume: t0 = T − 1: can exercise now or wait ↔ European option
Prop: C(S,K) ≥ c(S,K); P (S,K) ≥ p(S,K) (‘>’ if P(early exerc)> 0)

Definition (Dividend) Payoff prior from the stock (before maturity)
=⇒ Dividends can influence early exercise & value of American opts

Proposition (No Dividend: Call) rf> 0⇒ Do NOT exercise early

(∵) cearly1 = S −K ≤ S − K

1+rf
≤
[
S − K

1+rf

]
+

= ceur1

1st Ineq: Pay strike price now, not later. Last Ineq: Give up the opt

not to exerc at maturity =⇒ V (cearly1 ) ≤ V (ceur1 )

Proposition (No Dividend: Put) rf> 0⇒ CAN exercise early

(∵) P (S,K)=max{K-S, p(S,K)}=max
{
K − S, K

1+rf
− S + c(S,K)

}
Optimal if: rf

1+rf
K ≥ c(S,K). Ex: K much bigger than S

Gain: Get strike price now, not later.
Loss: Give up the opt not to exercise at maturity

Proposition (With Dividend:) D= Divid (t = 0), S=ex-divid price
Call: C(S,D,K) = max{S +D −K, c(S,K)}
Put: P (S,D,K) = max{K − S −D, p(S,K)}
(∵) American Call: 2 choices at t = 0
1) Exercise & get: dividend D + S (sell stock ex-dividend)
2) Hold option to maturity (t = 1).
=⇒ Divids induce early exerc for calls & delay early exerc for puts

Complete Markets:
Recall: Complete Market =⇒ ∃ a unique state price vector φ.
Note: If ∃ RF bond, then market is complete.

Proposition (European Call Price) c(S,K) =
EQ[[S−K]+]

1+rf

(∵) c(S,K) =
∑
ω φω(Sω −K)+, where Sω=stock price, t = 1, state ω

Theorem (Binomial Pricing) .
Assume: ∃ RF bond w/: t = 1 payoff 1, t = 0 price B = 1

1+rf

Stock price: binomial process S1 = uS (w.p.p) and S1 = dS (w.p.1− p)
Note: u&d=gross return on stock: NA =⇒ d < 1 + rf < u
=⇒ c(S,K) = φu[uS −K]+ + φd[dS −K]+ with{
cu = [uS −K]+
cd = [dS −K]+

φu = 1

1+rf
1+rf−d
u−d

φd = 1

1+rf
u−1−rf
u−d

(∵)

{
S = φuuS + φddS

1

1+rf
= φu + φd

Corollary (Replication Proof) Portfolio θ = [θS , θB ]′

=⇒ c(S,K) = θSS + θB
1

1+rf
= 1

1+rf

(
1+rf−d
u−d cu + u−1−rf

u−d cd

)
with

{
payoffu = θSuS + θB

!
= cu

payoffd = θSdS + θB
!
= cd

(∵)

{
θS =

cu−cd
(u−d)S

θB =
ucd−dcu
u−d

Corollary (Risk-Neutral Proof) Given State Prices φ:

c(S,K) =
EQ[[S−K]+]

1+rf
=

qcu+(1−q)cd
1+rf

(∵) q = φu
φu+φd

= 1+rf−d
u−d

Market Structure - Completing Markets with Options:

Definition (State-Index Security - SIS) Security/Portfolio with
state-separating payoff X: Xω = Xω′ ⇐⇒ ω = ω′

Assume: WLOG Xω < Xω′ ∀ω < ω′

Example: (European Option on SIS) Eur. Call Option on SIS X:
Strike Price: K = Xω =⇒ Payoff: (nonzero for states ≥ ω + 1)

c1 = [X −Xω]+= [0, . . . , 0, Xω+1 −Xω, . . . , XM −Xω]′ ∈ RM

Proposition (Completing Markets) Assume: One SIR X > 0 and
(M − 1) options on the SIR with strike prices X1, . . . , XM−1

Payoff: D = full rank ⇒ Complete Market

Example: Let Xω+1-Xω = δ > 0: D =

 δ 0 . . . 0
2δ δ · · · 0
· · · · · · · · · · · ·
Mδ (M − 1)δ · · · δ


Note: Get AD Security/State-ω contingent claim with butterfly (Λ):
Long 1 Call((ω − 1)δ), Short 2 Calls (ωδ), Long 1 Call((ω + 1)δ)
=⇒ pays δ only in state ω: Payoff=[0, . . . , ω, . . . , 0]

Get State prices & risk-neutral measure:
φω = 1

δ [(c(Kω+1)− c(Kω))− (c(Kω)− c(Kω−1))]

Price of ANY security with payoff D̃:

Pω =
∑
ω φωD̃ω →

∫∞
0

∂2c(K)

∂K2 D̃(K) dK

=⇒ S =
∫∞
0

∂2c(K)

∂K2 X(K) dK and B =
∫∞
0

∂2c(K)

∂K2 · 1 dK

Recover Q measure: q(K) =
∂2c(K)

∂K2 /
∫∞
0

∂2c(K)

∂K2 dK ; VIX = STD(Q)

Exact Arbitrage Pricing Theory (APT)

Idea: Price redundant assets using set of prices of base securities.
=⇒ Put constraints on SDF η: restrict co-movements of CFs

Beta/Expected Return Decomposition:

Theorem (FTAP Recall) Assume NO Redundant Asset:

NA ⇒∃!φ∗ ∈ RM s.t. P ′ = (φ∗)′D, where φ∗ = Dθ for some θ ∈ RN
Note: If rank (D) = N , then D′D full rank: P ′ = θ′D′D.

=⇒ θ∗ = (D′D)−1P , φ∗ = D(D′D)−1P and η∗ = φ∗Diag (p)−1

Proposition (SDF Mimicking Portfolio) Assume ∃rf :

Construct portf mimicking η: r−η = EP [r−η ]− (η − EP [η]) = cst− η∗

Furthermore, η = EP [r−η ] + EP [η]− r−η
Note: r−η achieves H-J bound: maximum Sharpe Ratio!

(∵) (1) Construct Portfolio with payoff η∗: Price = −
∑M
ω=1 φ

∗
ωη
∗
ω

(2) Want Payoff = Return i.e., investing 1$ gives return (1 + r−η):

−→ Need to invest 1 +
∑M
ω=1 φ

∗
ωη
∗
ω in RF asset.
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Proposition (E [returns] Decomposition) .

Fund. Asset Pricing Eq:πn=EP
[
rn − rf

]
=−(1 + rf )CovP

(
η, rn − rf

)
=⇒ πn = EP

[
rn − rf

]
=

CovP(rn,r−η)
VarP(η)

· λ = βn · λ

with λ := EP [r−η ]− rf = (1 + rf )VarP (η)

(∵) λ := EP [r−η ]− rf = −(1 + rf )CovP (η,−η) = (1 + rf )VarP (η)

η = EP [r−η ] + EP [η]− r−η = (λ+ rf ) + 1

1+rf
− r−η

=⇒ η = λ+ 1

1+rf
− (r−η − rf ) =⇒ πn = +(1 + rf )CovP (r−η, rn)

Definition (Market Price of Risk) λ = market (r−η) risk premium
−→ compensation an investor receives per unit of exposure to SDF

Definition (SDF Risk Exposure/Loading) .

βn = loading of asset n on (r−η − rf )
Prop: Asset n’s expected return depends only on its loading βn

Proposition (OLS Estimation of βn) β̂n =
Ĉov(rn,r−η)

V̂ar(r−η)

(∵) Assume IID realizations of returns indexed by t. Do OLS on:

rn,t − rf = αn + βn(r−η,t − rf ) + εn,t with E
[
εn,t|r−η − rf

]
= 0

Definition (Idiosyncr Risk) rn,t − rf = αn + βn(r−η,t − rf ) + εn,t
= (abnormal ret) + (co-mvmt w/ SDF’s excess ret r−η) + (idiosyncr)

Proposition (Var Deco)Var
(
rn − rf

)
=β2

nVar
(
r−η − rf

)
+Var (εn)

=⇒ Variance = systematic/priced var + unpriced/residual var

Assumptions (Joint Hypoth) No Arb + Correct SDF model r−η,t
=⇒ Stocks w/ different εn,t & same βn earn same return rn,t
=⇒ αn = 0! If get αn > 0: reject BOTH hypoth: ∃ Arb OR bad SDF

Definition (Security Market Line - SML) Plot: E [rn] vs. βn
Slope = λ (market price of risk)

Factor Structure:
Assumptions M states, N securities w/ payoff matrix D
• ∃ RF security (assume n = 1 is the RF asset)
• rank (D) = K ≤M −→ ∃ redund assets

Definition (Factor Structure) F= Basis for D

F = [F1, . . . , FK ] ∈ RM×K , and Fk ∈ RM×1

Definition (Betas of Payoffs on Factors) βZ ∈ RK

Payoff Space C = span (D) =
{
Dθ : θ ∈ RN

}
=⇒ ∀Z ∈ C, ∃βZ = [βZ1, . . . , βZK ]′ s.t. Z = FβZ

Any payoff Z ∈ C can be spanned by the factors: Z = FβZ
Conversely: Any factor can be replicated by securities in D: Fk = Dθk

Proposition (Factor Pricing) ∃ coeffs λ = [λ1, . . . , λK ] ∈ RK

s.t. V (Z) = λ′βZ =
∑K
k=1 λkβZk , ∀Z ∈ C.

(∵) NA =⇒ ∃V (·) linear: V (Z) = V (
∑
k βZkFk) =

∑
k βZkV (Fk)

Note: λk = −V (Fk) is INDEPENDENT of Z!
=⇒ Fk= risk factors & λk= market price of risk

Definition n = 1, . . . , N Securities:
• Gross Return: Rn = Dn/Pn ∈ RM

• Market Structure: R = [R1, . . . , RN ] ∈ RM×N

• R̄n = EP [Rn] ∈ RM , R̄ = [R̄1, . . . , R̄N ] ∈ RM×N

• εn = Rn − R̄n ∈ RM , ε = [ε1, . . . , εN ] ∈ RM×N

• βn ∈ RK , β = [β1, . . . , βN ] ∈ RK×N

Proposition (Factor Pricing for Returns) Assume EP [εn] = 0:

Rn = R̄n + εn = R̄n + Fβn = R̄n +
∑K
k=1 Fkβnk

=⇒ R = R̄ + ε = R̄ + Fβ (so need EP [Fβ] = 0)
−→ One RF factor ι := F1 = 1M and (K − 1) risk factors

Example: (2-Securities) Gross returns:

Security 1: 1→
{

1 w.p. 0.5

1 w.p. 0.5
Security 2: 1→

{
1/2 w.p. 0.5

2 w.p. 0.5

R̄1 = 0.5(1 + 1) = 1 and R̄2 = 0.5(1/2 + 2) = 1.25
Rn = R̄n + εn =⇒ ε0 = [0, 0]′ and ε1 = [−0.75, 0.75]′

Risk-free factor: F0 = [1, 1]′. Only 1 Risk factor: ε1 = F1 · β1

=⇒ F1 = [−1, 1]′, β1 = 0.75

Lemma • The value of any gross return is 1: V (Rn) =
EQ[Rn]

Rf
= 1

(∵) Asset Payoff=D: V (D) =
EQ[D]

Rf
=⇒ V (R) = 1

Rf
EQ
[

D
V (D)

]
= 1

Note: I pay 1$ today, get back Rn$ tomorrow

• The value of the sure Gross Return is 1: V (Rf ) = V (1 + rf ) = 1

• Under Q: EQ [Rn] = Rf =⇒ EQ [Rn]− Rf = 0

Theorem (Exact APT) Let Rn = R̄n + Fβn, n = 1, . . . , N , where:

(1) F = [F1, . . . , FK ] (K risk factors, EP [K] = 0)
(2) βn = [βn1, . . . , βnK ]′ (asset n’s beta)

N.A. =⇒ R̄n − Rf = r̄n − rf =
∑K
k=1 λkβnk = λ′βn , n = 1, . . . , N

where λk = −EQ [Fk] and λ = [λ1, . . . , λK ]′

(∵) Rf=EQ [Rn] = EQ
[
R̄n +

∑K
k=1 Fkβnk

]
= R̄n +

∑K
k=1 βnkE

Q [Fk]

Definition (Portfolio Beta) Given portfolio θ:

Its beta on risk Factor k: βk =
∑K
i=1 θiβik

Definition (Factor Mimicking Portfolio) .
Portfolio θk s.t. βki = δki (i = 1, . . . , K)
Prop: For each factor Fk, ∃ a factor portfolio θk

Corollary θk Factor Portfolio =⇒ Fk = Rk − R̄k = rk − r̄k
Definition (Factor Premium) λ = R̄k − Rf = r̄k − rf
=⇒ Expected excess return on factor portfolio

Proposition r̄n − rf =
∑K
k=1 λkβnk =

∑K
k=1 βnk(r̄k − rf ),

where λk = r̄k − rf : risk premium of kth factor portfolio
(∵) Under Exact APT, use factor portfolio

General Arbitrage Pricing Theory (APT)
Exact-APT Issue: Need Complete Market(K = M) ⇒ large #factors
Idea: We want:
• Model: large M (# states) & N (# assets) BUT small K (# factors)
• Study implications of No Asymptotic Arbitrage (NAA)

General Factor Model:
Assumptions (Factor Model for Returns) Suppose:

rn = r̄n +
∑K
k=1 βnkFk + εn, for n = 1, . . . , N

with: (1) EP [Fk] = EP [εn] = EP [εn|Fk] = 0, ∀k, n
(2) EP [ε2n] = σ2

n < v <∞, and EP [εnεn′ ] = 0 ∀n 6= n′

Note: Exact Model: εn = 0 for all n

Note: (Matrix Notation) Let r = r̄ + Fβ + ε where:

(1) EP [F ] = EP [ε] = EP [ε|F ] = 0

(2) Σ := EP [ε′ε] = Diag (σ1, . . . , σN )

r = [r1, . . . , rN ] ∈ RM×N , r̄ = [r̄1, . . . , r̄N ] ∈ RM×N

F = [F1, . . . , FK ] ∈ RM×K , ε = [ε1, . . . , εN ] ∈ RM×N

βn = [βn1, . . . , βnK ]′ ∈ RK , β = [β1, . . . , βN ] ∈ RK×N

Proposition (Variance Decomposition) Under Current Model:

VarP (rn) = β′nE
P [F ′F ] βn + VarP (εn)

CovP (ri, rj) = β′iE
P [F ′F ] βj for all i 6= j (∵) CovP (εi, εj) = 0

Diversification:
Definition (Return on a Portfolio) rθ = r̄θ + Fβθ + εθ
where: rθ = θr, r̄θ = θr̄, βθ = θβ, εθ = θε

Definition (Well Diversified Portfolio) θ ∈ RN Well-Diversified if:

θn = O(1/n) , where θ = [θ1, . . . , θN ]′, θ′1N =
∑N
n=1 θn = 1.

Note: θn = O(1/n) ⇐⇒ n · ‖θ‖∞ <∞
Definition (Well Diversified Sequence of Portfs) .
{θn}∞n=1, with θ′n1n =

∑n
i=1 θn,i = 1, is Well-Diversified

⇐⇒ ∃κ ∈ (0,∞), s.t. θ2
n,i < κ/n2 , ∀i = 1, . . . , n, ∀n ≥ 1

Note: θn= [ 1
n , . . . ,

1
n ]′=diversified, but [0, . . . , 1, . . . , 0]′=concentrated

Definition (Equally-Weighted Portfolio) θ = [ 1
N , . . . ,

1
N ]′

Prop: VarP
(
θ′r
)

= VarP
(∑N

n=1
1
N rn

)
= 1

N

[
1
N

∑N
n=1 VarP (rn)

]
+
(
1− 1

N

) [
1

N(N−1)

∑N
n=1

∑N
n′ 6=n CovP (rn, r′n)]

If rn = r̄ + F + εn, VarP (εn) = σ2
ε :

=⇒ VarP
(
θ′r
)

= 1
N σ

2
ε +

(
1− 1

N

)
VarP (F ) −→ VarP (F )

Idea: Covariance with risk affects an asset’s risk premium. Should
only price systematic risk (explains returns’ variation across all assets).
But can ∃ non-priced syst risk (e.g. linear comb of βs not associated
with changes in E [ret], λk = 0 for some k in APT)ex: Risk Neutr ppl

Theorem (Diversification Thm) {θn}∞n=1 well div portfs seq:

VarP (εθn ) = VarP
(∑n

i=1 θn,iεi
)
−→0 at rate O(1/n) (i.e,n · ‖θi‖ < C)

Note: Well Div portfs have only systematic/factor risks (no idiosyncr)

General APT:
Definition (Asymptotic Arbitrage−AA) {θn}∞n=1 Portfs seq s.t.
(1) Self Financed: 1′nθn = 0

(2) EP [rθn ] −→ α > 0

(3) VarP (rθn ) −→ 0
Prop: NAA =⇒ NA ?

Note: AA = arbitrage in the limit.
For n finite, portf carries tiny risk
Volatility may not be a sufficient
measure of risk.

Theorem (General APT) .
Given: K-Factors Model for security returns + NAA

=⇒ ∃rf ∈ R, λ = [λ1, . . . , λK ]′ ∈ RK s.t.:∑n
i=1

[
r̄i − (rf + λ′βi)

]2
=
∑n
i=1

[
r̄i −

(
rf +

∑K
k=1 λkβik

)]2
<A<∞

NAA =⇒ approx. factor pricing: r̄i − rf ≈
∑K
k=1 λkβik, ∀i

Note: So pricing error δ 6= 0 only for small nb of assets:
∑
i δ

2
i<A<∞

(∵) 1 Factor: project r̄ ∈ Rn on (1n, β) −→ r̄ = a01n + a1β + δ
where δ ∈ Rn, δ′1n = 0 (self-financing portf) and δ′β = 0 (by ⊥ proj.)
Note: βδ = δ′β = 0 =⇒ the δ portf has NO factor risk.
Take δ̃ = bδ for some b > 0: also self-financing
=⇒ EP [rδ̃] = EP [bδ′r] = bδ′r̄ = bδ′(a01n + a1β + δ) = bδ′δ = b‖δ‖2

and VarP
(
rδ̃
)

= VarP
(
bδ′r

)
= b2δ′Σnδ < b2vδ′δ = b2v‖δ‖2

Fix b = 1/‖δ‖2 =⇒ EP [rδ̃] = 1 & VarP
(
rδ̃
)
< v/‖δ‖2 → 0 =⇒ AA!

Corollary (General APT: Well-Diversified Case)NAA + Well Div

=⇒ Exact factor pricing r̄i − rf =
∑K
k=1 λkβik, ∀i

Corollary (General APT: Implications) For large N , Small K:
=⇒ APT applies to most (not all) securities:

r̄i − rf =
∑K
k=1 βik(r̄k − rf ) =

∑K
k=1 λkβik

where βik = factor loading of asset i on factor k
& λk = r̄k − rf = risk premium of factor k mimicking portfolio

=⇒ “APT ⇐⇒ SDF model affine in factors: η = a+ Fb”

Testing APT & Linear SDF Models:

Idea: Test if E[returns] lie on the SML implied by factor’s E[return]
Data: (usually monthly) T-bill rates & asset + factor returns

Example: (Time-Series Approach) .

GOAL: Regress asset’s rn − rf on factors: is α = 0?
Assume: βi,k cst over time −→ betaportf more stable than βasset

• Run times series regression for tradable asset/portfolio i:

ri,t − rft = αi +
∑K
k=1 βi,k(rk,t − rft ) + εi,t, for t = 1 · · ·T

• Test if α̂i = 0 or jointly test if {α̂i}Ni=1 = 0

Example: (Cross-Sectional Approach) .
GOAL: Make empirical counterpart to SML: β estimates explain r̄n?
Geometric Interpretation: Estimate the SML with linear regression
Step 1: estimate β for each asset through time-series regression:

=⇒ ri,t − rft = αi +
∑K
k=1 βi,kFk,t + εi,t −→ save

{
α̂i, β̂i

}N
i=1

Step 2: Use results to run cross-sectional regression:

=⇒ 1
T

∑T
t=1(ri,t − rft )

i.p.−→ E
[
ri − rf

]
= λ0 +

∑K
k=1 λkβ̂i,k + ui

• Check if λ0 = 0 and λk = E [Fk,t] if factors=tradable excess returns

• Perfect model + enough data =⇒ ui = 0 ∀i and R2 = 100%
Note: Works with non-traded factors too: λ0 unrestricted

Note: (Practical Considerations) Data =⇒ get risk prices λk
=⇒ Charactrz all major sources of syst risk + stock/portf’s exposure
Step 1: Find data on factors: Returns (PCA), Fundam (macro data)

Step 2: Estimate β & λ: careful! missing factor? β = β(t), λ = λ(t)?

Property (Fama-French) CAPM can’t explain portf rn sorted on
simple firm characteristics (recently: momentum)
Beta: Sort returns vs β ⇒ line too flat (βi = Cov (Ri, Rm) /Var (Rm))
Size: Small cap stocks returns > large cap stock returns
BV to Mrkt Ratio: (growth stck) rlow ratio > rhigh ratio (value stck)
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In Practice
• Payoff Space Spanned by Securities:

C1(D) = {c1 = Dθ : θ ∈ RN} = span (D1, . . . , DN )

• Complete Market: ⇐⇒ span (D) = RM ⇐⇒ rank (D) = M

⇐⇒ ∀c1 ∈ RM , ∃θ ∈ RN S.T. Dθ = c1

• Arrow-Debreu Securities: DAD := IN×N (complete market):

→ construct using portfolio θ = D−1 (∵) Dθ = I = DAD

→ State Prices: φ = (D−1)′P

• Arbitrage Existence: ⇐⇒ ∃θ ∈ RN s.t. Bθ > 0.

Type 1: Bθ = [0, > 0]′ free at t = 0, maybe paid at t = 1

Type 2: Bθ = [> 0,≥ 0]′ paid at t = 0, maybe paid at t = 1
Proposition .Market Equilibrium =⇒ 6 ∃ arbitrage
(∵) invest ∞ amount in it =⇒ no equilibrium
Warning: 6 ∃ arbitrage 6=⇒ Market Equilibrium

• State Price Vectors: (consistent with NA) P ′ = Φ′D.

• Rank of D1: M = #states, N = #assets, D1 = M ×N .

• rank (D1) < N
. ⇒ ∃ redundant
• rank (D1) < M

. ⇒ Im(D1) ( RM Incompl
• rank (D1) = N = M
. ⇒Complete + 6 ∃ redundant

• Feasible Set of Investor Choices: B(e0, {D1, P})
• Complete, No redund: rank (D1) = M = N

=⇒ θ = D−1(c1 − e1)

=⇒ B(e, {D1, P}) =
{
c1 ∈ RM+ : P ′D−1

1 (c1 − e1) ≤ e0
}

.

• Complete & redund: rank (D1) = M < N

=⇒ ∃D̃1(M ×M) full rank & A(M × (N −M)) s.t.

D1 = [D̃′1, (D̃1 × A)′]′

=⇒ (c̃1 + ĉ1) = (ẽ1 + ê1) + D̃1θ̃ + D̃1Aθ̂

=⇒ θ̃ = D̃−1
1 (c̃1 − ẽ1) & θ̂ = (A′A)−1A′D̃−1

1 (ĉ1 − ê1)

=⇒ B(e, {D1, P}) =
{
c̃1, ĉ1 ∈ RM+ :

. P ′D̃−1
1 (c̃1 − ẽ1) + P ′(A′A)−1A′D̃−1

1 (ĉ1 − ê1) ≤ e0;

. ĉ1 = ê1 + D̃1A(A′A)−1A′D̃−1
1 (ĉ1 − ê1)

}
• Incomplete, no redund: rank (D1) = N < M

=⇒ ∃D̃1(N ×N) full rank & D̂1((M −N)×N) s.t.

D1 = [D̃′1, D̂
′
1]′ =⇒ θ = D̃−1

1 (c̃1 − ẽ1)

=⇒ B(e, {D1, P}) =
{

[c̃′1, ĉ
′
1] ∈ RM+ :

. P ′D̃−1
1 (c̃1 − ẽ1) ≤ e0;

. ĉ1 = ê1 + D̂1D̃
−1
1 (c̃1 − ẽ1)

}
•

Optimal Portfolio Choices

Idea: Before: “reduced form” of course.
=⇒ Now: build bottom-up micro-founded model

Expected Utility (E.U.) Theory
Preferences:
Idea: How agents use the fin market to best meet their econ needs

Definition (Consumpt◦ Set) C = {c = [c0, c
′
1]′ ∈ R1+M} ⊆ R1+M

Definition (Rational Preference) .

Binary relat <k over consump C = R1+M
+ s.t.

Complete: a, b ∈ C =⇒ a <k b or b <k a or both.
Reflexive: a ∈ C =⇒ a <k a
Transitive: a <k b & b <k c =⇒ a <k c

Axiom (Continuity)∀c∈C: {a∈C : a < c} & {b∈C : b 4 c} closed
⇐⇒ ∀{an} → a, {bn} → b ∈ C : an < bn ⇒ a < b

Axiom (Insatiability) a > b =⇒ a < b (more < less)

Axiom (Convexity) ∀a, b, c ∈ C , ∀α ∈ (0, 1) :
a & b & c < b =⇒ αa+ (1− α)c < b
Prop: Convex < =⇒ convex sets of preferred bundles {a ∈ C : a < c}
Definition (Utility Function) u : C → R, s.t.
a, b ∈ C : a < b ⇐⇒ u(a) ≥ u(b).
Strictly Monotonic: u(c) > u(c′), ∀c � c′.
Prop: Insatiability =⇒ u is strictly ↗, u′ > 0
Indifference Curve: Plot u on a c1 vs. c0 plane

Theorem (Debreu) C ⊆ R1+M closed & cnvx, < rational + cont
=⇒ < can be represented by a continuous utility function u on C.

Definition (Expected Utility) over a consumption path/lottery
u(c, p) =

∑
ω∈Ω pωuω(c0, c1ω), ∀c ∈ C.

Consumption Lotteries consumption in each state + probas (c, p)
Note: u depends on prob of future states
Upper-Contour Set: Indiff curve separates upper/lower region.
Von Neumann Morgenstern (vNM) utility: uω(c0, c1ω)
Prop: u & u(c, p) are ordinal ; uω is cardinal!
Prop: u invariant w.r.t. ↗ transfos; uω invariant w.r.t. affine transfos

Axiom (Continuity) ∀ consumption c ∈ C, probas pa, pb, pc:
[c, pa] < [c, pb] < [c, pc] =⇒ ∃α ∈ (0, 1) : [c, pb] ∼ [c, (1− α)pa + αpc]

Axiom (Independence) ∀ consumption c ∈ C, α, pa, pb, pc ∈ (0, 1):
[c, pa] < [c, pb] =⇒ [c, (1− α)pa + αpc] < [c, (1− α)pb + αpc]

Theorem (vNM, 1944) < on (C, P) has a EU representation
⇐⇒ < rational + continuous + independent

=⇒ u(c, p) =
∑
ω∈Ω pωuω(c0, c1ω)

Assumptions (State Independence) uω(c0, c1ω) = u(c0, c1ω)

Assumptions (Time Additivity) u(c0, c1ω) = u(c0) + ρu(c1ω)
where ρ ∈ (0, 1] is an (optional) time preference/discount coeff

Assumptions (No Complemnt+/Substitute−)
∂2uω(c0,c1ω)
∂c0∂c1ω

= 0

Assumptions (State Indep + Time Add for Exp. Util)
u(c, p) = u(c0) + ρ

∑
ω∈Ω pωu(c1ω) with ρ ∈ (0, 1)

Definition (Marginal Utility) At consumption level c: u′(c)
Prop: Insatiability =⇒ u′(·) > 0 (so u ↑)
Definition (Concave Function)
u(αx+ (1− α)x′) ≥ αu(x) + (1− α)u(x′)
Prop: u concave & twice differentiable ⇐⇒ u′′ ≤ 0, u′ ↘
Theorem (Concavity) < with Continuity + Indep + Convexity ax:
< can be represented by a discounted expected utility function
u(c, p) = u(c0) + ρ

∑
ω∈Ω pωu(c1ω) =⇒ u(·) concave

(∵) Let consumpt◦ plan (c0, c1) with c1ω = c1 (sure lottery at t = 1):
u(c0) + ρu(c1(c0)) = µ =⇒ u′(c0) + ρu′(c1(c0))c′1(c0) = 0

=⇒ u′′(c0) + ρu′′(c1(c0))c′1(c0)2 = −ρu′(c1(c0))c′′1 (c0)

Note: c1(c0) is LB of convex set in R2 =⇒ c′′1 (c0) ≥ 0 (convex)

Along ray c0 = c1 = c: u′′(c)(1 + ρc′1(c)2) = −ρu′(c)c′′1 (c) ≤ 0

Risk-Aversion
Definition (Fair Gamble) r.v. x s.t. E [x] = 0

Definition (Risk Aversion) Agent with E.U. u(·) is risk-averse
⇐⇒ E [u(w + x)] ≤ E [u(w)] for any E [x] = 0.
Note: RA =⇒ Sure Payoff < Risky Payoff w/ Same Mean

Proposition (Concavity of u)Agent (strict) RA⇔ u (strict) concave
(∵) =⇒ ∀w1<w2, p ∈ (0, 1): Bern Gamble x={x1, x2} w.p. (p, 1-p)

s.t. x1 = −(1− p)(w2 − w1) and x2 = p(w2 − w1) =⇒ E [x] = 0
Let w = pw1 + (1− p)w2: so w1 = w + x1, w2 = w + x2

RA =⇒ pu(w1) + (1− p)u(w2) ≤ u(w) = u(pw1 + (1− p)w2) concave
⇐= u concave Jensen

=⇒ E [u(w + x)] ≤ u(w + E [x]) = u(w) =⇒ RA

Measures of Risk Aversion:
Definition (Risk Premium) x fair gamble, agnt w/ EU u, wealth w:
Risk Prem π required by agnt to take gamble: E [u(w + x)] = u(w − π)
Note: π = amount of wealth an agent ok to give up to get rid of risk
Certainty Equivalent: u(wCE) = E [u(w)] Prop: π = E [w]− wCE
(∵) u(wCE) = E [u(w)] = u(E [w − π − x]) = u(w − π)

Definition (Absolute Risk Aversion) A(w) = −u
′′(w)

u′(w)

Prop: Small Gamble x: π ≈ 1
2A · Var (x)

(∵) E [u(w + x)] = u(w) + 1
2u
′′(w)E

[
x2
]

+ o(x2)
!
= u(w − π) = u(w)-u′(w)π + o(π)

Note: A(w) associated w/ risk premium per unit of absolute risk
Risk Tolerance: T (w) = 1/A(w)

Definition (Relative Risk Aversion) R(w) = −w u′′(w)

u′(w)

Prop: Small Risk wx: πR ≈ 1
2R · Var (x)

(∵) E [u(w(1 + x))] = u(w(1− πR))
Note: risk premium ∝ R× size of the risk (as a fract◦ of wealth)

Theorem (Pratt) Agents 1 & 2 w/ EU u1 & u2:

A1(w) ≥ A2(w) ∀w ⇐⇒ u1(u−1
2 (·)) concave

⇐⇒ ∃f s.t: f ′ > 0, f ′′ ≤ 0 & u1(w) = f(u2(w))
⇐⇒ π1 ≥ π2, ∀w & fair gambles x

(∵) f(z) = u1(u−1
2 (z)), w = u−1

2 (z) =⇒ f(z) =
u′1u
−1
2

u′2u
−1
2

(z) > 0

(1) =⇒ (2) f ′′(z) = −[A1(w)− A2(w)]
u′1(w)

u′2(w)2
≤ 0 for A1 ≥ A2

(2) =⇒ (3) Take f(z) = u1(u−1
2 (z))

(3) =⇒ (4) u1(w − π1) = E [u1(w + x)] = E [f(u2(w + x))]

[Jensen: f concave] ≤ f(E [u2(w + x)]) = f(u2(w − π2))

(4) =⇒ (1) Small gambles x: π ∝ A so trivial. Large gambles: Paper!

Examples of Risk Aversion:

Definition (CARA) Constant Absolute RA: A′(w) = 0

Definition (IARA/DARA) Incr/Decr Absolute RA: A′(w) ≷ 0

Definition (CRRA) Constant Relative RA: R′(w) = 0

Definition (IRRA/DRRA) Incr/Decr Relative RA: R′(w) ≷ 0

Example: (Linear EU) u(w) = w
=⇒ Risk Neutral agents: A(w) = R(w) = 0

Example: (Negative Exponential EU) u(w) = −e−aw, a > 0
=⇒ CARA agents: A(w) = a, R(w) = aw

Example: (Quadratic EU) u(w) = w − 0.5aw2, a > 0, w ∈ [0, 1/a]
=⇒ IARA agents: A(w) = a

1−aw , R(w) = aw
1−aw

Example: (Log EU) u(w) = logw
=⇒ CRRA agents: A(w) = 1/w, R(w) = 1

Example: (Power EU) u(w) = 1
1−γw

1−γ , γ > 1

=⇒ CRRA agents: A(w) = γ/w, R(w) = γ Prop: γ → 1⇒ Log EU

Example: (HyperbolicARA EU) u(w) = a+ b
(
d+ w

γ

)1−γ

=⇒ HARA agents: A(w) = 1
d+w/γ

, R(w) = w
d+w/γ

, T (w) = d+ w
γ

Prop: Risk Neutral (d = −∞), Quadr (γ = −1),

Neg Exp (γ →∞, d = 1
a ), Log (d = 0, γ = 1), Power (d = 0, γ < 1)



By Zied Ben Chaouch

Optimal Consumption/Portfolio Choice

Assumptions (Setting) N non-redund assets, payoff D, price P
Agent: Endowt e = [e0, e

′
1]′, Consumpt plan c = [c0, c

′
1]′, Portf θ

EU: u(c) = u0(c0) + E [u1(c1)] with u′t > 0, u′′t < 0 (t = 0, 1)
Inada Condition: limc→0 u

′
t(c) =∞ (no need to assume c ≥ 0)

Proposition (Agent’s Optimization Pb) maxθ u0(c0) + E [u1(c1)]
[P ′θ = e0 − c0=time-0 savings] s.t. c0 = e0 − P ′θ

c1 = e1 +Dθ

Theorem (Existence of Optimal Portf) Agent Optimization Pb:
∃ solution ⇐⇒ No Arb in market {D,P}
(∵) =⇒ If ∃Arb: agent can achieve unbounded consumpt◦ levels.

⇐= If 6 ∃Arb: ∃φ� 0 s.t. P ′ = φ′D

Consumption financed by θ is [−P ′θ, (Dθ)′]′

Agent’s Budget: B(e) =
{
c ≥ 0 : c = e+ [−φ′Dθ, (Dθ)′]′, θ ∈ RN

}
Use: B̂(e) =

{
c ≥ 0 : c = e+ [−φ′d, d′]′, d ∈ RM

}
(with N ≤M)

Note: B(e) =
{
c ∈ B̂(e) : d = Dθ

}
⊆ B̂(e), B(e) = B̂(e)⇔M = N

Now: B̂(e) bdd for φ� 0 =⇒ B(e) bdd + closed =⇒ B(e) compact
u, u0, u1 continuous over compact B(e) =⇒ max exists

Special Case: Complete Markets:

Assumptions .
Complete set of AD securities, State Price φ� 0
Agent: endowement e = [e0, e

′
1]′, wealth w = e0 + φ′e1

Budget: B(e) =
{
c : c0 + φ′c1 = w

}
(Simplify: ignore c ≥ 0)

Marginal cost = φω : Additional $1 in asset ω =⇒ c1ω ↗ by 1/φω

Proposition (Optimization) max
c0+φ′c1=w

u0(c0) +
∑
ω pωu1(c1ω)

Lagrang: L = u0(c0) +
∑
ω pωu1(c1ω)− λ

[
c0 + φ′c1 − w

]
→ ∂c0 , ∂c1

FOC: λ = u′0(c0) −→ marginal value of wealth

λφω = pωu
′
1(c1ω) =

∂E[u1(c1)]
∂θω

−→ margin benefit of ↗ c1ω = θωD1ω

Note: At optim: relative marg utils for consumpt◦ in diff
dates/states = their relative prices

ηω = φω
pω

=
u′1(c1ω)

u′0(c0)
= intertemp marg rate

of substitution
, φω
φ
ω′

=
pωu
′
1(c1ω)

p
ω′u
′
1(c

1ω′ )

Proposition ut strictly concave
=⇒ u′t strictly ↘ & u′−1

t exists

Theorem (Optimal Portfolio Choice) Solve FOC:

c0 = u′−1
0 (λ) and c1ω = u′−1

1

(
λφωpω

)
∀ω ∈ Ω

where λ solves budget constraint: w = e0 + φ′e1 = c0(λ) + φ′c1(λ)

TheoremComplete Market, agnts w/ insatiable + strictly concave EU:

c1ω < c1ω′ ⇐⇒
φω
pω

>
φ
ω′
p
ω′

(for all ω, ω′ ∈ Ω, ∀k)

Note: At optimum: levels of consumption in diff states are ranked
inversely by SPD η −→ High pain ηω ⇒ Low consumpt◦ c1ω

General Equilibrium: Lucas Tree Model (1978):

Assumptions Agents w/ identical prefs + endowments
• Complete Market: agents can freely trade resources over time/states

• Market Clearing: aggreg consumpt◦
∑
k ck =

∑
k ek aggreg endow

PROBLEM: Find Equilibrium State Prices + Risk-Free Rate

Prop: FOC + Market Clearing =⇒ u′1(c1ω)

u′0(c0)
=

u′1(e1ω)

e′0(c0)
= φω

pω = ηω

Note: Denom known =⇒ randomness in ηω depends on u′(c1ω)
u′(c1ω)↘ w/ c1ω so: High Pain ⇒ High Marg Util ⇒ Low c1ω = e1ω
Example: (Special Case) e1ω = e1 & u1(c) = δu0(c) =: δu(c)

=⇒ constant SPD ηω =
δu′(c1ω)

u′(c0)
=: 1

1+rf

So: 1 + rf > 1
δ ⇐⇒ c1 > c0 (ppl prefer to smooth consumption out)

Note: cst aggregate consumption =⇒ 1 + rf = 1/δ
No uncertainty: high growth + abundant resources ⇒ interest rates< 1

δ

Example: (CRRA) e1ω := c̄1 + εω, E [εω] = 0:

u(c) = c1−γ
1−γ =⇒ u′(c) = cγ =⇒ u′′(c) = −γc−γ−1

=⇒ u′′′(c) = γ(1 + γ)c−γ−2 > 0 so convex marginal util u′

Jensen
=⇒

1

1+rf
= E [ηω] = E

[
δu′(c1ω)

u′(c0)

]
≥ δu′(E[c1ω ])

u′(c0)
=

δu′(c̄1)

u′(c0)

Precautionary Savings Effect: Possibility of high marg util states
in future makes agnt want to save more.
=⇒ Pushes RF bond price ↗ and the rf ↘
Characterization of Optimal Portfolio:

Proposition (Optimization) Use Budget Constraint for c0, c1
=⇒ maxθ u0(e0 − P ′θ) + E [u1(e1 +Dθ)]

= maxθ u0(e0 − P ′θ) +
∑
ω pωu1

(
e1ω +

∑N
n=1 θnD1ωn

)
Definition (Euler Eqn) FOC: u′0(c0)Pn = E

[
u′1(c1)Dn

]
, n = 1..N

At optimum: MU(t=0 consumpt loss: paid Pn to invest in 1 asset n) =
MU(t=1 consumpt gain: receive payoff Dn from investment in asset n)

OR: 1 = E
[
u′1(c1)

u′0(c0)

Dn
Pn

]
=: E

[
u′1(c1)

u′0(c0)
Rn

]
MU(invest in traded assets)/MU(consuming today) = 1 ∀n
Note: FOC does not guarantee optimality: need SOC!

Definition (SOC) Optimality obtained if, in addition to FOC:
u′′0 (c0)P 2

n + E
[
u′′1 (c1)D2

n

]
≤ 0, n = 1, . . . , N

Prop: u1, u2 concave =⇒ SOC holds

Proposition (Portfolio Decomposition) .
Agent’s t = 0 savings: w = e0 − c0 = P ′θ
=⇒ Optimal consumpt/portf choice: maxω {u0(e0 − w) + v1(w)}
v function: v1(w) = max

{θ:P ′θ=w}
E [u1(e1 +Dθ)]

Note: v =portf choice problem given total amount to invest =w

Example: (Special Case) e1 = 0 (agent endowed only with e0 cash)
=⇒ Portf Choice Pb: v(w) = max

{θ:P ′θ=w}
E [u1(Dθ)]

Riskless asset: asset N with gross return Rn = 1 + rf

an = θnPn: $ invested in asset n =⇒ w =
∑
n an total investment

Portf payoff: w̃ = Dθ =
∑N
n=1 anRn = w(1 + rf ) +

∑N−1
n=1 an(rn − rf )

Excess Return of asset n: rn − rf

Theorem (General Pb) .
r = [r1, . . . , rN−1]′ returns on risky assets;
a = [a1, . . . , aN−1]′ investments in risky assets;
=⇒ Optimal Portfolio Pb:

maxa E [u(w̃)] = maxa E
[
u
(
w(1 + rf ) + (r − rf ι′)a

)]
=⇒ FOC: E

[
u′(w̃)(rn − rf )

]
= 0 ∀n = 1..N − 1

−→ Solution = a(w) ∈ RN−1

Note: FOC: marg cost of investing in n

=E
[
u′(w̃)rn

]
= E

[
u′(w̃)rf

]
=marg cost of losing rf

Properties of Optimal Portfolio:
Case 1: Assume only ONE risky asset:

Prop: w̃ = w(1 + rf ) + a(r − rf )

(∵) borrow at RF rate, invest in risky asset
Proposition (Opt Investment a) Agent = strictly RA

a > 0 ⇐⇒ r̄ > rf ; a < 0 ⇐⇒ r̄ < rf

a = 0 ⇐⇒ r = rf

(∵) ū(a) = E [u(w̃)] = E
[
u(w(1 + rf ) + a(r − rf ))

]
ū′′(a) = E

[
u′′(w̃)(r − rf )2

]
≤ 0 as u concave

=⇒ at max: 0 = ū′(a) = E
[
u′(w̃)(r − rf )

]
ū′(0) = u(w(1 + rf )) · (r̄ − rf )→ sign(r − rf )

a < 0 ⇐⇒ ū′(0) < 0 ⇐⇒ r < rf

Prop: risk-premium> 0 =⇒ agent invest at least ε in risky asset

(∵) Change a = 0 to a = ε small:
dE[w̃]
da = r̄ − rf indep of a

dVar(w̃)
da = d

da (a2Var (r)) = 2aVar (r)↗ with a

Proposition (Abs RA) Assume r̄ − rf > 0 (so a > 0)
a′(w) > 0⇔ A′(w) < 0 (DARA) ; a′(w) = 0⇔ A′(w) = 0 (CARA)
a′(w) < 0⇔ A′(w) > 0 (IARA −→ very rare)

(∵) Consider DARA: A′(w) < 0. FOC: E
[
u′(w̃)(r − rf )

]
= 0

=⇒ d
dw and algebra: use u′′ < 0, a > 0, A(w̃) = −u

′′(w̃)
u(w̃)

Prop: You see from FOC diff: da
dw = −(1 + rf )

E
[
u′′(w̃)(r−rf )

]
E[u′′(w̃)(r−rf )2]

Definition (Relative Propensity) for investor in risky asset:
e(w) = w

a
da
dw

Note: e(w) = 1⇔ a(w) = ā ·w: risky investM = CST fract◦ of wealth

Proposition (Rel RA) Assume r̄ − rf > 0 (so a > 0)
e(w) > 1⇔ R′(w) < 0 (DRRA) ; e(w) = 1⇔ R′(w) = 0 (CRRA)
e(w) < 1⇔ R′(w) > 0 (IRRA −→ very rare)

(∵) FOC diff =⇒ e(w) = w
a
da
dw = −w(1+rf )

a

E
[
u′′(w̃)(r−rf )

]
E[u′′(w̃)(r−rf )2]

=⇒ e(w)− 1 = − 1
a

E
[
u′′(w̃)(r−rf )

]
E[u′′(w̃)(r−rf )2]

= − 1
a

E
[
R(w̃)(−u′(w̃))(r−rf )

]
E[u′′(w̃)(r−rf )2]

Case 2: Assume MULTIPLE risky assets:

Prop: w̃ = w(1 + rf ) + (r − rf ι′)
Theorem (Opt Investment a) a = 0⇔ E [rn] = rf ∀n = 1..N − 1
(∵) ⇒: Use FOC
⇐: risk prem = 0 for all risky assets
=⇒ E [w̃] = w(1 + rf ) −→ payoff from a=0 portf

Jensen: E [u(w̃)] ≤ u(E [w̃]) = u(w(1 + rf )) for all a =⇒ a = 0 opt

Theorem (Opt Investment a II) Some risk-prem on risky assets 6=0

=⇒ E [rportf] > rf (i.e.,
∑N−1
n=1 an(E [rn]− rf ) ≥ 0)

(∵) Jensen: u(E [w̃]) ≥ E [u(w̃)] ≥ u(w(1 + rf )) =⇒ E [w̃] ≥ w(1 + rf )

=⇒
∑N−1
n=1 an(E [rn]− rf ) ≥ 0

Stochastic Dominance

Idea: 2 key elements to rank portfs: E[return] & risk −→ tradeoff!
Use: partial order (returns props let agnts rank 2 portfs, indep of prefs)
Let rA, rB = returns of assets A & B

First Order Stochastic Dominance:(dominance in return distrib)
Definition (FSD) A dominates B in the FSD sense:
A &FSD B ⇐⇒ ∀u′ ≥ 0 : E [u(rA)] ≥ E [u(rB)]
Note: u(r) = u(w(1 + r))
Prop: A &FSD B =⇒ r̄A ≥ r̄B but converse FALSE!

Theorem FA, FB CDFs of RA & RB :
A &FSD B ⇐⇒ FA(x) ≤ FB(x) ∀x
⇐⇒ rA

d
∼ rB + ε, with ε ≥ 0

(∵) use IPP + recall E [u(R)] =
∫ R̂
0
u(x)dF (x)

Theorem (Ordering) A &FSD B =⇒ : for u′ > 0, u′′ < 0

maxa E
[
u(w(1 + rf ) + a(rA − rf ))

]
≥maxa E

[
u(w(1 + rf ) + a(rB − rf ))

]
(∵) Let f(a, ri) := E

[
u(w(1 + rf ) + a(ri − rf ))

]
and

aB = argmaxa f(a, rB): maxa f(a, rA) ≥ f(aB , rA) ≥ maxa f(a, rB)

Second Order Stochastic Dominance:(dominance in risk)
Definition (SSD) A dominates B in the SSD sense:
A &SSD B ⇐⇒ ∀u′′ ≤ 0 : E [u(RA)] ≥ E [u(RB)]
Prop: ONLY WORKS IF R̄A = R̄B !

Prop: A &SSD B =⇒ Var (RA) ≤ Var (RB) but converse FALSE!

Theorem (Rothschild-Stiglitz) A &SSD B
⇐⇒ E [RA] = E [RB ] and

∫ y
0

[FA(x)− FB(x)]dx =: S(y) ≤ 0 ∀y
⇐⇒ RA

d
∼ RB + ε, with E [ε|RB ] = 0

Prop: RA ∼ N(µ, σ2
A), RB ∼ N(µ, σ2

B): σA < σB =⇒ A &SSD B

(∵) RB
d
∼ RA + ε⇒ ε ∼ N(0, σ2

B − σ
2
A) ⊥⊥ B ⇒E [ε|RA] = 0

Note: Var (RA) ≤ Var (RB) 6=⇒ A &SSD B: try utility that has
small P of black swan
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Mutual-Fund Separation Thms
Idea: Characterize Opt Portfs: Explore restrictions on
(1) Return Distributions (2) Agent’s Utility Function (3) Both

Assumptions (Setup) .
xn = an

w : weight of portf a in asset n (n = 1..N)

x = [x1, . . . , xN ]′ ∈ RN with ι′x = 1
Note: x defines a portf with gross return Rx = Rx

Proposition (Optimal Portf Pb) v =util funct◦ over returns
max

{x:ι′x=1}
E [u(w̃)] = max

{x:ι′x=1}
E [u(wRx)] = max

{x:ι′x=1}
E [v(Rx)]

Definition (F -Fund Separation) The set of optimal portfs of

different agents lie in a F − 1 ≤ N − 1 dimens affine subspace of RN
XF= the F − 1 dimensional subspace
xk∈ RN= agent k’s opt portf (k = 1..K)
xFi∈ R= F indep portfs/funds in XF (i = 1..F )
F funds are called the separating funds or mutual funds
Prop: F -Fund separation =⇒ xk =

∑F
i=1 hkixFi with

∑F
i=1 hki = 1

Every agent’s opt portf = lin comb of the F funds
Note: If ∃ a RF asset: it’s often ∈ F funds → Monetary Separat◦

=⇒ Remaining F − 1 funds consist of only risky assets

Theorem (Ross - 2 Fund Sep) .

Suppose: ∃ RF asset w/ gross return Rf (call it asset N).
2 Funds Separation holds for any insatiable & concave util funct◦

⇐⇒ returns on risky assets satisfy: ∃F, βn, xn, n = 1..N − 1 s.t.
(1) Rn = Rf + βnF + εn
(2) E [εn|F ] = 0

(3)
∑N−1
n=1 xnεn = 0 where

∑N−1
n=1 xn = 1

Note: RF security = a separating fund
Note: Returns of risky assets have a 1-factor structure
Note: ∃ a portf of only risky assets (w/ xn=weight in risky asset
n ∈ {1..N − 1}) s.t. idiosyncratic risks are fully eliminated
portf with only factor risk &SSD portf w/ factor + idiosyncr risk

Theorem (Preferences & Mutual-Fund Separation) .
Assume: arbitrary return distrib & u′ > 0, u′′ < 0
1-Fund Sep holds ⇐⇒ all agents have the same util funct◦ over
returns (up to affine transfos)
Note: 1-Fund Sep is STRONG: need ∼ identical prefs!

Example: (Homothetic CRRA) u(wRx) = w1−γ · u(Rx)
=⇒ argmaxx E [u(wRx)] = argmaxx E [u(Rx)]
Note: opt portf x indep of wealth level: can allow for heterogen in w

(∵) =⇒ argmaxx E [u(wRx)] = argmaxx w
1−γE [u(Rx)]

Theorem (Cass-Stiglitz) 2-Fund monetary sep holds

⇐⇒ u′k(w) =
(
dk + w

γ

)−γ
> 0 for every agent k

with dk ≥ 0 and γ ≥ −1 same for all agents

Mean-Variance Portfolio Theory
Idea: To characterize optimal portfolios, impose restriction on:
Preferences (U) and/or Returns distribution
Here: focus on case where preferences over portfolio return is a
function of mean + variance (i.e., suff stats for returns distrib)

Mean-Variance Preference:
Definition (Portfolio Choice Pb) maxa:i′a=1 E [u(w̃)]
where: a = portf weights, w̃ = total wealth

Prop: E [u(w̃)] =
∑
n

1
n!u

(n)(E [w̃]) · E [(w̃ − E [w̃])n]

Idea: Focus on E.U. that depends on E [w̃] & Var (w̃)

Definition (Mean-Variance Preferences)
E [u(w̃)] = v (E [w̃] ,Var (w̃)) = v(w̄, σ2

w)

Definition (Quadratic Utility) u(w) = w − 1
2aw

2, a > 0, w < 1/a

Prop: u(·) quadratic =⇒ E [u(w̃)] = v(w̄, σ2
w)

(∵) E [u(w̃)] = E
[
w̃ − 1

2aw̃
2
]

= w̄ − 1
2aw̄

2 − 1
2aσ

2
w

Prop: v ↗ w̄,↘ σw and is concave in w̄ & σw

(∵) ∂v
∂w̄ = 1− aw̄ > 0 , ∂v

∂σw
= −aσw < 0 ,

and ∂2v
∂w̄2 = ∂2v

∂σ2
w

= −a < 0 , ∂2v
∂w̄∂σw

= 0

Proposition (Jointly Normal Returns) D jointly normal
=⇒ w̃ = Dθ ∼ N(w̄, σw)
=⇒ mean-variance preferences: E [u(w̃)] = v(w̄, σ2

w)
(∵) w̃ = w̄ + σwε, where ε ∼ N(0, 1)
Prop: v(w̄, σw) = E [u(w̃)], u′ > 0, u′′ < 0: v ↗ w̄,↘ σw + concave

(∵) ∂v
∂w̄ = E

[
u′(w̄ + σwε)

]
> 0 ,

∂v
∂σw

= E
[
u′(w̄ + σwε)ε

]
< E

[
u′(w̄)ε

]
= 0 ,

and ∂2v
∂w̄2 = E

[
u′′(w̄ + σwε)

]
< 0 , ∂2v

∂σ2
w

= E
[
u′(w̄ + σwε)ε

2
]
< 0

Proposition (2nd Order Approx) .
Risk Premium π: E [u(w̃)] = E [u(w̄ + ε)] = u(w̄ − π) with ε = w̃ − w̄
Small risk =⇒ π(w̄, σ2

w) ≈ 1
2

[
−u
′′(w̄)

u′(w̄)

]
σ2
w

=⇒ For small gambles: mean-variance prefs approximate any u(w̃)

Mean-Variance Frontier Portfolios:
Idea: (2-Step Approach) .
(1) Minimize Var (w̃) as a function of the a target E[portf return] r̄p

=⇒ Find set of mean-variance frontier portfs
(2) Pick portf r̄p that maximizes u(w̃)

Assumptions (Setup) r = [r1, . . . , rN ]′ ∈ RN asset returns with:

mean r̄ = E [r] & covariance matrix Σ = E
[
(r − r̄)′(r − r̄)

]
∈ RN×N

x = [x1, . . . , xN ] ∈ RN portf weights: rx = r′x, r̄x = r̄′x, σ2
x = x′Σx

Terminal Wealth: w̃ = w(1 + rx), E [w̃] = w(1 + r̄x), Var (w̃) = w2σ2
x

Agents prefer portfs w/ higher E [rx] & lower σ2
x.

Definition (Mean-Variance Frontier Portf − MVF) min
x

1
2x
′Σx

s.t. r̄′x = r̄p & ι′x = 1

Proposition (Trick) ∂
∂xx

′Σx = ∂
∂x′ x

′Σx = x′(Σ + Σ′) = 2x′Σ

Assumptions (Additional) Only risky assets + No redundancy

=⇒ Σ full rank & ∃Σ−1

Theorem (MVF Solution) L = 1
2x
′Σx+ λ1(r̄p − r̄′x) + λ2(1− ι′x)

FOC: x′Σ = λ1r̄
′ + λ2ι

′ with r̄′x = r̄p & ι′x = 1

=⇒ x = λ1Σ−1r̄ + λ2Σ−1ι (plug-in constraints to get λ’s)

Define: x1 := 1

ι′Σ−1ι
Σ−1ι & x2 := 1

ι′Σ−1r̄
Σ−1r̄ Prop: ι′x1,2 = 1

=⇒ 2 frontier portfs with E[returns] r̄1 = r̄′Σ−1ι

ι′Σ−1ι
& r̄2 = r̄′Σ−1r̄

ι′Σ−1r̄
=⇒ x = λx2 + (1− λ)x1

=⇒ r̄p = λr̄2 + (1− λ)r̄1 with λ =
r̄p−r̄1
r̄2−r̄1

Vary r̄p to draw the Mean-Variance Frontier → only boundary!

Corollary (2-Funds Separation) .
• Any MVP generated by mixing 2 MVF portfs: x1 & x2

• MVF generated by mixing any 2 MVF portfs
• Portfs of MVFs is an MVF Portf
• The set of MVF Portfs = line in RN

(∵) Set of portfs: X =
{
x ∈ RN : ι′x = 1

}
∈ RN−1

Set of MVF portfs: XMVF ⊆ X and x1, x2 ∈ XMVF =⇒ line in RN

MVF Portfolio Properties:

Definition (Minimum Variance Portfolio − MVP)
∂σ2
p

∂r̄p
= 0

Prop: Necessary & suff: x′MVPΣ(x2 − x1) = 0

(∵) 0 =
∂σ2
p

∂r̄p
=

∂σ2
p

∂x ·
∂x
∂r̄p

= 2x′Σ(x2 − x1) · 1
r̄2−r̄1

Prop: xMVP = x1 (∵) x′1Σ(x2 − x1) = 1

ι′Σ−1ι
ι′(x2 − x1) = 0

Prop: MVF = Hyperbola in r̄ − σ plane

(∵) xp = x1 + λ(x2 − x1), and σp =
√
σ2

1 + λ2Var (r2 − r1) so:

r̄p = r̄1 + λ(r̄2 − r̄1) = r̄1 ±
σ2
p−σ

2
1

Var(r2−r1)
(r̄2 − r̄1)

Theorem ∀ Portf p: Cov (rp, rMVP ) = σ2
MVP

(∵) New Portf α: rα := αrp + (1− α)rMVP so by MVP def:

0 = argminα Var (rα) =⇒ ∂
∂αVar (rα) = 0 at α = 0

0 = ∂
∂α |α=0

[
(1− α)2σ2

MVP + α2Var (rp) + 2α(1− α)Cov (rp, rMVP )
]

=⇒ 0 = −σ2
MVP + Cov (rp, rMVP )

Note: Can also say that o’wise, we would get σα < σMVP :
Var (rα) = σ2

MVP + 2αCov (rp − rMVP , rMVP ) + α2Var (rp − rMVP )

≈ σ2
MVP + 2αCov (rp − rMVP , rMVP ) so if Cov ≷ 0 : take α ≶ 0 ↓ σα

Prop: MVP always dominated by other MVF portfs (unless U is

vertical →∞ Risk Aversion)

Definition (Zero-Covariance Portf − ZCP) Given MVF portf p:
Portf ZCP s.t. Cov (rZCP , rp) = 0 for that p 6= MV P

Theorem (ZCP ∃) If MVF p 6= MV P , ∃ ZCP: Cov (rZCP , rp) = 0

Note: rZCP := rp + α(rMVP − rp) with α = −
σ2
p

σ2
MVP

−σ2
p

(∵) Cov (rp, rZCP )=σ2
p + αCov (rp, rMVP − rp)=σ2

p + α(σ2
MVP -σ2

p)

Theorem (Towards Zero-Beta CAPM) Given MVP p w/ its ZCP:

∀ portf q: r̄q − r̄ZCP = βqp(r̄p − r̄ZCP ), where βqp =
Cov(rq,rp)

σ2
p

(∵) Let MVF Portf q∗ with same return as q:
rq = rq∗ + ru with E [ru] = 0, Cov (ru, rp) = Cov (ru, rMVP ) = 0
=⇒ ∃α s.t. rq∗ = rZCP + α(rp − rZCP )
=⇒ r̄q = r̄q∗ = r̄ZCP + α(r̄p − r̄ZCP ) (so βqp := α) and

Cov (rq, rp) = Cov (rq − ru, rp) = Cov
(
rq∗ , rp

)
= ασ2

p

Theorem (Geometry of ZCP)
.
Any MVF Portf q satisfies:
rq = rp + α(rp − rZCP )
=⇒ r̄q = r̄p + α(r̄p − r̄ZCP )

σ2
q=σ2

p+2ασ2
p+α2Var (rp − rZCP )

=⇒ Tangent at p: Intercept=r̄ZCP

& Slope =
r̄p−r̄ZCP

σp

Connection with the SPD:
Assumptions NA =⇒ ∃ SPD m > 0 (or η)

Definition m∗ = projection of m on linear space of payoffs
Prop: (m−m∗) ⊥ payoffs, so E [(m−m∗) · payoff] = 0

Prop: At t = 0: m∗ price P0(m∗) = E [m ·m∗] = E
[
(m∗)2

]
(∵) E [mm∗]=E [(m∗ + (m−m∗))m∗]=E

[
(m∗)2

]
+E [(m−m∗) ·m∗]

Prop: Return on portf m∗: 1 + r∗ := m∗
P0(m∗) = m∗

E[(m∗)2]

Proposition (SDF Prices All Assets) E [m∗ · payoff] = 0
Note: Also, E [r∗ · payoff] = 0 (as r∗ ∝ m∗ ∝ m)
(∵) TBD

Proposition (Efficiency of m∗) Portf m∗ is on MVF

(∵) Decompose r∗ = m∗
E[(m∗)2]

:

r∗ = rp + ru with E [ru] = 0, Cov (ru, rp) = Cov (ru, rMVP ) = 0
Notice: E [rpru] = Cov (rp, ru) + E [rp]E [ru] = 0 + E [rp] · 0 = 0

=⇒ E [r∗ru] = E [rpru] + E
[
r2
u

]
= 0 + σ2

u
Also: E [r∗ru] = 0 as r∗∝m∗∝m and m prices all portfs: E [rum] = 0
=⇒ σ2

u = 0 =⇒ ru ≡ 0 =⇒ r∗ = rp so m∗ is on the MVF

Proposition (MVF Location of m∗) .

m∗ minimizes E
[
r2
p

]
= σ2

p + r̄2
p among all MVF portfs

(∵) For any MVF portf p: rp = r∗ + α(rp − rZCP )

=⇒ E
[
r2
p

]
= E

[
(r∗)2

]
+ α2E

[
(rp − rZCP )2

]
+ 2αE [r∗(rp − rZCP )]

where E [r∗(rp − rZCP )] = 0 as SDF prices all payoffs

=⇒ E
[
r2
p

]
≥ E

[
(r∗)2

]
for all p ∈ MVF

Riskless Asset:

Assumptions N risky assets, 1 RF asset (rate rf )

• Excess return on risky assets: re = r − rf ι
• Portf weights on risky assets: x, on RF asset: 1− ι′x
• Terminal Wealth: w̃ = w

[
(1 + rf ) + x′re

]
Definition (MVF Portfolio) Expected Excess Return r̄ep
xp = argminx x

′Σx s.t. r̄ex = r̄ep Note: r̄e ∈ RN but r̄ep ∈ R
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Theorem (MVF Solution) L = 1
2x
′Σx+ λ(r̄ep − x

′r̄e)

FOC: x′Σ = λr̄e with r̄ep = x′r̄ex =⇒ xp =
r̄ep

r̄e
′
Σ−1r̄e

Σ−1r̄e

Vary r̄ep to get the MVF in presence of RF asset

Note: r̄ep = 0 =⇒ xp = 0 so all in RF

r̄ep = r̄e
′
Σ−1r̄e

r̄e
′
Σ−1ι

=⇒ ι′xp = 1 so all in risky ≡ Tangency Portf

In general: total weight in risky asset ap := ι′xp = r̄e
′
Σ−1ι

r̄e
′
Σ−1r̄e

r̄ep

Definition (Tangency Portf) All in risky asset:

xT := 1

r̄e
′
Σ−1ι

Σ−1r̄e Prop: For all p ∈ MVF: ap =
r̄ep
r̄e
T

, xp = apxT

Also we get a line: rp = rf + w(rT − rf )
Any MVF portf = mix of Tangent portf & RF asset

Definition (Sharpe Ratio) Given Portf x: SR := x′r̄e√
x′Σx

Prop: Among all portfs of risky assets only: Tngt portf has max SR

(∵) FOC to max SR: x =
√
x′Σx
SR Σ−1r̄e =⇒ ι′x = 1 =⇒ x = Tngt

Theorem Let p ∈ MVF, then for all portf q:

r̄q − rf = βqp(r̄p − rf ), βqp :=
Cov(rp,rq)

σ2
p

(∵) xp =
r̄ep

r̄e
′
Σ−1r̄e

Σ−1r̄e

=⇒ Cov (rp, rq) =
r̄ep

r̄e
′
Σ−1r̄e

r̄e
′
Σ−1Σxq =

r̄ep

r̄e
′
Σ−1r̄e

r̄eq

If p = q: σ2
p =

(r̄ep)2

r̄e
′
Σ−1r̄e

=⇒ Cov (rp, rq) =
r̄eq
r̄ep
σ2
p = βqp

Note: .
• Under mean variance prefs: 2-fund separation holds.
• The optimal portfolios of all agents have a very simple structure.

.

In Practice

Consumption Choice Problem 1:

Setup: M=2 states, N=2 assets (1 RF + 1 risky)

t=1 returns: R=

[
1 u
1 d

]
, probs: πu, πd.

Agent: initial wealth w0, final w1 = 0.
Portf Weights (RF/Risky asset): α = [α1, α2]′

Max Prob: max
c0,c1,α

log c0 + βE [log c1]

2 Budget Constraints: c1 = (w0 − c0)Rα
(a) Find optimal α = α(w0, c0, c1):

Complete Market: ∃R−1 =⇒ α = 1
w0−c0

R−1 · c1
(b) Rewrite Constraints Using Only (w0, c0, c1):

φ = P ′R−1 with P = [1, 1]′ so ηu = φu
πu
, ηd =

φd
πd

=⇒ Constraint: w0 := c0 + E [ηc1] = c0 + πuηuc1,u + πdηdc1,d
(c) Optimize over (c0, c1) + Find c0(λ), c1(λ):

max
c0,c1

log c0 + βE [log c1] s.t. w0 = c0 + πuηuc1,u + πdηdc1,d

L = log c0 + βE [log c1]− λ (c0 + πuηuc1,u + πdηdc1,d − w0)
c0
=⇒ λ = 1/c0 ; c1,s=⇒ λπsηs = βπs/c1,s with s = u, d

=⇒ c0 = 1
λ c1,u = β

ληu
=

c0β
ηu

c1,d = β
ληd

=
c0β
ηd

(d) Plug λ in constraint + Get λ = λ(w0):

w0 = c0 + πuηuc1,u + πdηdc1,d = 1
λ + πuβ

λ +
πdβ

λ

=⇒ λ = 1+β
w0

(e) Get c0(w0), c1(w0):

c0 =
w0
1+β c1,u = β

1+β
w0
ηu

c1,d = β
1+β

w0
ηd

Consumption Choice Problem 2:

Setup: 1 RF (return rf ) + 1 Risky asset:

r = r̄ + σε ε ∼ N(0, 1) (r̄ > rf )
Agent: e0 > 0 and e1 = hε (h > 0)

Maximize: max
c0,c1

−e−αc0 − ρE
[
e
−αc1

]
, α > 0 cst

(a) Invest a in risky asset:

Write t = 1 consumption c1 = c1(e0, e1, c0, a, r
f , r)

c1 = e1 + w(1 + rf ) + a(r − rf ) = e1 + (e0 − c0)(1 + rf ) + a(r − rf )
(b) Write optimal portf choice problem:

max
c0,a
−e−αc0 − ρE

[
e
−α

(
e1+(e0−c0)(1+rf )+a(r−rf )

)]
(c) Write FOC: d

da and d
dc0

(d) Solve FOC for Opt Portf Choice problem: Get a, c0
(e) How does h influences c0 and a?

c0 ↘ in h. Higher uncertainty about e1 =⇒ lower certainty
equivalent of this payoff. When h is high: agent feels poorer ⇒ wants
to consume less.
a↘ in h. Higher uncertainty about e1 =⇒ less willingness to invest
in the risky asset (adds risk to c1).

Consumption Choice Problem 3:

Setup: 1 RF (asset 0) +N risky assets: n = 1, .., N

Returns: R0 = Rf = 1 and Dn = D̄ + εn (n = 1..N), εn
iid∼ N(0, σ)

Prices: P0 = 1, Pn = P for all n
Agent: CARA u(w) = −e−aw, a > 0
Endowment: 1 share of each asset n, 0 shares of RF.
Portfolio holdings of risky assets: θ = [θ1, . . . , θN ]′ ∈ RN
(a) Write agent’s wealth w̃ at t = 1:

w̃ =
∑N
n=1 θnDn︸ ︷︷ ︸

Asset n
Payoff

+ 1
P0

(∑N
n=1 Pn︸︷︷︸

t=0 wealth
(endowment)

−
∑N
n=1 θnPn︸ ︷︷ ︸

wealth invested
in risky assets

)

(b) Write Optimal Portf Choice Pb:

max
θ

E
[
−e−aw̃

]
s.t. w̃ =

∑N
n=1 θnDn +

∑N
n=1(1− θn)Pn

Dn
iid∼ N(D̄, σ2)

=⇒ w̃ ∼ N
(∑N

n=1 θnD̄n +
∑N
n=1(1− θn)Pn, σ

2∑N
n=1 θ

2
n

)
⇒ −aw̃ ∼ N

(
−a
∑N
n=1 θnD̄n − a

∑N
n=1(1− θn)Pn, a

2σ2∑N
n=1 θ

2
n

)
E
[
−e−aw̃

]
=−exp

(
−a
∑N
n=1 θnD̄n − a

∑N
n=1(1− θn)Pn + a2

2 σ
2∑N

n=1 θ
2
n

)
=⇒ max

θ

N∑
n=1

θnD̄n +
N∑
n=1

(1− θn)Pn −
a

2
σ

2
N∑
n=1

θ
2
n

(c) Solve Optimal Portf Pb: FOC w.r.t. θn

D̄ − Pn − aσ2θn = 0 =⇒ θn = D̄−Pn
aσ2

(d) Show: for different values of RA a, 2-Fund Separation Holds:

Initial Wealth of Agents: w0 =
∑N
n=1 Pn

=⇒ agents invest optimally fractions
θnPn
w0

= 1
a

(D̄−Pn)Pn
w0σ

2 of wealth in asset n

and 1− 1
a

(D̄−Pn)Pn
w0σ

2 in RF asset

=⇒ agents hold lin comb of RF asset

and risky portf xM = [x1, . . . , xN ]′ (xn =
(D̄−Pn)Pn
w0σ

2 )

Depending on RA: Hold 1
aXM in risky & 1− 1

aX
′
M ι in RF

(e) If agent = only agent in market

Find Equilibrium Risky Prices Pn

Market Clearing: 1
!
= θn = D̄−Pn

aσ2 =⇒ Pn = D̄ − aσ2

(f) Find Risk Premium on Risky Assets + N→∞ Limit:

πn = R̄n − Rf = E [Rn]− 1 =
E[Dn]
Pn

− 1 = aσ2

D̄−aσ2 indep of N

(g) Does APT Hold in this Market when N→∞?

∃ Asymptotic Arbitrage in this Market: (so APT can’t hold)

Seq of arb portfs: θN0 = −1, θNn = 1
N ∀n

=⇒ E
[
rθN

]
=
∑N
n=1

1
N r̄n − 1 = r̄1 − 1 = π1 = aσ2

D̄−aσ2 > 0

While Var
(
rθN

)
=
∑N
n=1

1
N2 Var (εn) = σ2

N → 0
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Static Equilibrium Models of Asset Pricing

Market Equilibrium
Invest - Transfer money:

• Deposit accounts

• Mortgages

The Capital Asset Pricing Model (CAPM)

The Consumption-based CAPM (C-CAPM)
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Asymmetric Information

Financial Markets: Grossman-Stiglitz Model
Invest - Transfer money:

• Deposit accounts

• Mortgages

No-Trade Theorem

Rational Expectation/Market Efficiency

Market Microstructure: Kyle & Glosten-Milgrom
Models

Dynamic Modelling

Dynamic State-Space Framework, FTAP
Invest - Transfer money:

• Deposit accounts

• Mortgages

Arbitrage Asset Pricing (Dynamic)

Dynamic Portfolio Choices

Dynamic Equilibrium Models: Complete Mar-
kets, CCAPM

Dynamic Equilibrium Models: Incomplete Mar-
kets
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