

15.470 Asset Pricing

Last Updated November 12, 2018

Fundamental Theory of Asset Pricing

Introduction

Definition (Positive Approach) Minimal restrictions of **no arbitrage**. Somewhat unique to finance due to wealth of data.

Definition (Normative Approach) Micro-founded model of portfolio choice \Rightarrow Decision rules \Rightarrow equilibrium restrictions on prices.

	Positive Approach Reduced Form	Normative Approach Structure
Theory is	useful for <i>relative</i> prices <i>Derivative assets</i>	useful for <i>absolute</i> prices <i>Why is S&P returns at 7%/yr?</i>
Pros	Weak assumptions: learn from the data	economics more transparent, potentially more robust to policy changes
Cons	Prices are endogenous, world is always changing \rightarrow conclusions may lack external validity <i>Model may not apply in future</i>	stronger assumptions \rightarrow model will always be misspecified

This Course: Demand for + Valuation of risky assets.

Ignore: frictions that make supply of risky assets hard (corpor. fin.)

- Financial frictions
- Capital structure: firm choice of debt/equity
- Moral hazard/separation of ownership and control (exec comp)
- Banking and liquidity

Definition (Gross Return) Change in value of a \$1 initial investment

$$R_{t+1} = \frac{\text{Payoff}(t+1)}{\text{Payoff}(t)} = \frac{X_{t+1}}{P_t}$$

- investor receives cash flow X_{t+1} without taking an action.
- can choose to liquidate position at market price X_{t+1} .
- can choose to reinvest cash flows at market price P_{t+1} .

Definition (Net Return) $r_t = 1 + R_t$.

Definition (Excess Return) $= r_t - r^f$.

Definition (Compound Return) $\Pi_{j=1}^k R_{t+j}$ = Return from t to $t+k$ where cash flows are reinvested.

Definition (Returns Stats)

Arithmetic: $\bar{R}_T^A = \frac{1}{T} \sum_{t=1}^T R_t$ (Arithm < Geom by Jensen)

Note: Arithmetic: quoted, not meaningful

Geometric: $\bar{R}_T^G = \left[\prod_{t=1}^T R_t \right]^{1/T} = \exp \left(\frac{1}{T} \sum_{t=1}^T \log R_t \right)$

Note: Geometric: captures compounding

Sample Variance: $\hat{\sigma}^2 := \frac{1}{T-1} \sum_{t=1}^T \left[R_t - \frac{1}{T} \sum_{j=1}^T R_j \right]^2$

Stand. Dev/Volatility: $\hat{\sigma} = \sqrt{\hat{\sigma}^2}$

Skewness, Kurtosis: Higher moments.

Nonparametric: histograms, bootstrap, Monte-Carlo, resampling...

Definition (Risk Premium) $\pi_t = \mathbb{E}[r_t - r^f]$.

Definition (Sharpe Ratio) $SR_t = \frac{\mathbb{E}[r_t - r^f]}{\text{Std}(r_t - r^f)} = \frac{\mathbb{E}[\text{return}]}{\text{Unit Risk}}$.

Properties (Log Plot) $\log R(t+k) - \log R(t) = \sum_{i=t+1}^k \log R_i$
 $= \log R(t+1, t+k)$ cumulative log return over holding period $[t, t+k]$.

Vector Notation: $a = [a_1, \dots, a_n]' \in \mathbb{R}^n$

a ≥ 0 : $a_i \geq 0 \ \forall i$ ($a \in \mathbb{R}_+^n$)

a > 0 : $a_i \geq 0 \ \forall i$ AND $a_i > 0$ for at least one i .

a $\gg 0$: $a_i > 0 \ \forall i$ ($a \in \text{Int } \mathbb{R}_+^n$)

Arrow-Debreu State-Space Framework

Environment: (M States) $m = 1, \dots, M$

Two Dates: $t = 0, 1$

t = 1 State Space: $\Omega = \{\omega_1, \dots, \omega_M\} \implies M$ states

Prob. Measure: \mathbb{P} over Ω , $p_m := \mathbb{P}(\omega_m)$, $\sum_{m=1}^M p_m = 1$.

Agents: (K Agents) $k = 1, 2, \dots, K$

Resources:

- Information:** For now, assume **all** prior info in **same** \mathbb{P} . Assume **Rational** \mathbb{E} & **Homog. Beliefs**

- Endowment:** \exists one perishable good in economy.

$$\mathbf{e}^k := [e_0^k, \mathbf{e}_1^k]' = [e_0^k, e_{11}^k, \dots, e_{1M}^k]' \in \mathbb{R}^{1+M}$$

$$e_0^k \text{ at } t = 0 \quad e_{1\omega}^k \text{ at } t = 1 \text{ & state } \omega.$$

$$\text{Standard Portfolio Problem: } e_0^k > 0, \mathbf{e}_1^k = 0.$$

$$\text{Nonnegative Endowment: } \mathbf{e}^k \in \mathbb{R}_+^{1+M} (\mathbf{e}^k \geq 0).$$

- Production Technology:** Pay $\$I$ now, get $f_\omega(I)$ at $t = 1$ & state $\omega \implies y_0(I) = -I; y_1(I) = [f_1(I), \dots, f_M(I)]'$
 $\text{Assume: } f_\omega(0) = 0$ (invest nothing get nothing)
 $\& f_\omega'(I) \geq 0, f_\omega''(I) \leq 0$ (Increasing but Diminishing returns)

Choices: Consumption + Resource Alloc.

- Consumption:** $\mathbf{c}^k := [c_0^k, \mathbf{c}_1^k]' = [c_0^k, c_{11}^k, \dots, c_{1M}^k]' \in \mathbb{R}^{1+M}$
 $c_0^k = e_0 - P'\theta$ ($t = 0$) (How much I eat today)
 $c_{1\omega}^k = e_1 + D_1\theta|_\omega$ ($t = 1$, state ω) (How much I eat tomorrow)

- Consumption Plan:** $\mathbf{c}^k := [c_0^k, \mathbf{c}_1^k]$

- Consumption Path:** $[c_0^k, c_{1\omega}^k] \implies \text{What we Observe!}$

- Consum. Set:** $C := \{\mathbf{c}^k : \text{feas.}\} \subseteq \mathbb{R}^{1+M}$; Usual: $C = \mathbb{R}_+^{1+M}$
Prop: C is a **closed** + **convex** subset of \mathbb{R}^{1+M} .

- Budget Set:** Set of consumption plans given by purchasing θ :
 $B(e, \{D_1, P\}) := \{c \geq 0 : \theta \in \mathbb{R}^N, c_0^k = e_0 - P'\theta, c_1^k = e_1 + D_1\theta\}$

Preferences: How they make choices.

Rational Preference: binary relat \gtrsim^k over consump $C = \mathbb{R}_+^{1+M}$ s.t.

- Complete:** $a, b \in C \implies a \gtrsim^k b$ or $b \gtrsim^k a$ or both.

- Reflexive:** $a \in C \implies a \gtrsim^k a$

- Transitive:** $a \gtrsim^k b$ & $b \gtrsim^k c \implies a \gtrsim^k c$

Continuous Pref \gtrsim : $\Leftrightarrow \forall \{a_n\} \rightarrow a, \{b_n\} \rightarrow b \in C : a_n \gtrsim b_n \Rightarrow a \gtrsim b$
Utility Function: $u_k : C \rightarrow \mathbb{R}$, s.t.

$$a, b \in C : a \gtrsim b \Leftrightarrow u_k(a) \geq u_k(b).$$

Strictly Monotonic: $u_k(c) > u_k(c')$, $\forall c > c'$.

Theorem (Debreu) $X \subseteq \mathbb{R}^n : \gtrsim$ **rational** + **cont**
 $\implies \gtrsim$ can be represented by a **continuous** utility function.

Securities Market: (N Assets) $n = 1, \dots, N$

Security: Financial Claim yielding payoff/**dividend** D_{1n} at $t = 1$.

Payoff Vector: $D_{1n} = [D_{11}, \dots, D_{1M}]' \in \mathbb{R}^M$, $D_{1\omega}$ at $t = 1$ state ω .

Market Structure: $D_1 = [D_{11}, \dots, D_{1N}] = [D_{1\omega n}]_{M \times N} \in \mathbb{R}^{M \times N}$

Price: $P_n \in \mathbb{R}$: price of security n at $t = 0$.

Price Vector: $P = [P_1, \dots, P_N]' \in \mathbb{R}^N$ at $t = 0$.

Portfolio: $\theta = [\theta_1, \dots, \theta_N] \in \mathbb{R}^N \rightarrow \text{cost}_{t=0} = -P'\theta$, $\text{payoff}_{t=1} = D_1\theta$.

Short Sale: $\theta_j < 0$: borrow $|\theta_j|$ of asset j ($t = 0$), pay $\theta_j D_{1\omega j}$ ($t = 1$).

B Matrix: $B := [-P', D]' \in \mathbb{R}^{(M+1) \times N}$.

Proposition

$$c = e + B'\theta = [e_0 - P'\theta, [e_{1m} + \sum_{n=1}^N D_{n1m} \theta_n]]_{M \times 1}$$

Frictionless Market:

- No access + transactions costs + taxes

- No position constraints + market impact + divisible goods

- No information asymmetry

Market Equilibrium:

Optimization: $\max_{\theta} u_k(c^k)$ s.t. $c^k \in B(e, \{D_1, P\})$; $\text{Sol}^\circ = \theta^k(P, e)$.

ex: $M = N = 1$, $D_1 = 1$, $P = 1/(1+r) \rightarrow$ borrow/lend at rate r .

ex: $M = N = 2$, $e_0 > 0$, $e_1 = 0$, c_0 fixed, wealth $w_0 = \text{Diag}(e_0 - c_0)$

\rightarrow choose $c_{1\omega} = w_0 D_1 \text{Diag}(P^{-1}) \theta = w_0 R_1 \theta$ s.t. $\theta^k \mathbf{1}_N = 1$.

Market Equilibrium: Supply = Demand

Market Clearing: $\sum_{k=1}^K \theta^k(P, e^k) = 0$ i.e. $\sum_{k=1}^K c^k = \sum_{k=1}^K e^k$.
 \implies Gives equilibrium prices $P(D_1, \mathbb{P}, \{u^k, e^k\}_{k=1}^K)$.

Pareto Dominance: Allocation c^k Pareto Dominates $c^{k'}$

$\implies u^k(c^k) \geq u^{k'}(c^{k'}) \forall k$ and strict for one k .

Pareto Optimality: Allocation c^k is Pareto Optimal

$\implies c^k$ feas. ($\sum_k c^k = \sum_k e^k$) & \nexists a feasible P.Dominating alloc.

Investor decides upon her portfolio θ (facing P)

State of nature realizes.
Portfolio pays off according to D_1 .

$t = 0$

$t = 1$

t

Arbitrage

Replication:

Exclude Asset: $\theta_{\setminus n} = [\theta_1, \dots, \theta_N]' \in \mathbb{R}^{N-1}$ portfolio excluding θ_n , $D_{\setminus n} = [D'_1, \dots, D'_N]' \in \mathbb{R}^{M \times (N-1)}$ payoff matrix excluding D_n .

Definition (Redundant Security) Security n is redundant
 $\implies \exists \theta_{\setminus n}$ s.t. $D_{\setminus n} \theta_{\setminus n} = D_n$

Definition (Our Setup) rank $(D_1) = N \leq M$:

\implies drop redundant security (but possibly incomplete market).

Definition (Payoff Space C_1)

$$C_1(D_1) := \{c_1 = D_1\theta \in \mathbb{R}^M : \theta \in \mathbb{R}^N\} = \text{span}(D_1, \dots, D_N) \subseteq \mathbb{R}^M$$

Prop: $\dim C_1 = N$

Definition (Payoff Replicat $^\circ$) Payoff c_1 = replicated/financed by θ
 $\implies c_1 \in C_1(D_1) \iff \exists$ portfolio $\theta \in \mathbb{R}^N$ s.t. $c_1 = D_1\theta$

Definition (Complete Market) A securities market is complete

$\implies \forall$ payoff $c_1 \in \mathbb{R}^M, \exists \theta \in \mathbb{R}^N$ s.t. $D\theta = c_1$.

$\implies \text{span}(D_1, \dots, D_N) = \mathbb{R}^M$ (i.e., need $N = M$)

Definition (State-Contingent Claims/Arrow-Debreu Securities)
State- ω contingent claim $e_\omega \in \mathbb{R}^M$ has payoff 1 in state ω , 0 otherwise.

Definition (Arrow-Debreu Market/Economy)

A securities market with a **complete set** of A-D securities:

$$D^{AD} = \mathbb{I}_{N \times N} = \mathbb{I}_{M \times M} \quad (\text{as } N = M)$$

Prop: An AD Market is complete.

Definition (State Price Vector ϕ)

ϕ_ω = price of e_ω at $t = 0$.

Vector: $\phi = [\phi_1, \dots, \phi_M]'$ $\in \mathbb{R}^M$.

Set of State Prices: $\Phi = \{\phi \in \mathbb{R}^M : \text{consistent with NA}\}$ ($P' = \Phi'D$)

Prop: Payoff $c = [c_1, \dots, c_M]'$ $= \sum_{\omega=1}^M e_\omega c_\omega$

Prop: Price of Portfolio $\theta = [\theta_1, \dots, \theta_{M-N}]'$: $P = \sum_{n=1}^N \phi_n D_n$ (?)

Definition (Arbitrage)

Given market with structure D , price vector P :

Arbitrage = trading strategy θ at $t = 0$ s.t.

1. Require no cash inflow at $t = 0$: $P'\theta \leq 0$
2. Generates positive cash flow at $t = 1$: $D\theta \geq 0$

AND one of the ineqs is **strict**.

Note: Arbitrage = rely on prices+payoffs NOT probabilities

Arbitrage = scalable (frictionless market) + available to everyone

Principles (No Arbitrage) Frictionless market $\Rightarrow \exists$ arbitrage

Proposition (Arbitrage Existence) $\iff \exists \theta \in \mathbb{R}^N$ s.t. $B\theta > 0$.

Type 1: $B\theta = [0, > 0]'$ free at $t = 0$, maybe paid at $t = 1$

Type 2: $B\theta = [> 0, \geq 0]'$ paid at $t = 0$, maybe paid at $t = 1$

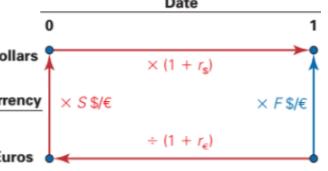
Proposition

Market Equilib + 1 agent w/ strictly monotonic pref $\Rightarrow \exists$ arbitrage
(\cdot) invest ∞ amount in it \Rightarrow no equilibrium

Warning: \exists arbitrage $\not\Rightarrow$ Market Equilibrium

Example: (Covered Interest Parity (CIP) Formula)

- Borrow € today at int. rate r_e .
- Convert € to \$ at the current exchange rate S .
- Invest \$ at US interest rate r_s .
- \Rightarrow Must have **SAME** price F as forward contract: $F = S \times \frac{1+r_s}{1+r_e}$

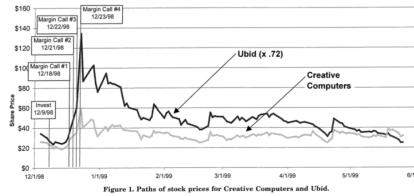


Note: (Limits to Arbitrage)

Pure arbitrage \exists only in **perfect** markets. In **practice**:

- Need capital + posting collateral.
- Shorting is costly! People are worried about default risk
- **Imperfect Information + Market Frictions** \Rightarrow arbitrage strategies are **capital intensive + risky**:

- Arbitrageurs use leverage to invest more than their own \$.
- Can get margin calls before the arbitrage takes place.
- Short-selling is risky! No limited liability (∞ losses)



• "To avoid the costly margin calls, the arbitrageur would have had to post \$4.53 of excess cash for every \$1 of long position."

• Return with transaction costs/margin limits: 9.5%

• Return ignoring frictions: 45.9%

CIP Violations in the Data:

- Arbitrage is associated with opportunity costs
- Regulations \Rightarrow only financial institutions can close the CIP arb.
- High capital requirements for trading to close CIP arb. (very high costs at quarter ends)

Fundamental Thm of Asset Pricing (FTAP)

Valuation Operator:

Definition (Asset Pricing Model) Mapping from a security's payoff vector d to its price P : $P = V(d)$.

Definition (Pricing/valuation operator) $V : \mathbb{R}^M \supseteq C_1(D) \rightarrow \mathbb{R}^M$
 $d \mapsto P = V(d)$.

Theorem Under No Arbitrage: $d, d_1, d_2 \in C_1(D)$, $a, b \in \mathbb{R}$

Positivity $d > 0 \Rightarrow V(d) > 0$, and $d = 0 \Rightarrow V(d) = 0$

Law of One Price $d_1 = d_2 \Rightarrow V(d_1) = V(d_2)$

Monotonicity $d_1 \geq d_2 \Rightarrow V(d_1) \geq V(d_2)$

Linearity $V(a \cdot d_1 + b \cdot d_2) = aV(d_1) + bV(d_2)$

Theorem (FTAP) \exists arbitrage in market

$\iff \exists \phi \gg 0$ s.t. $P' = \phi'D$ (i.e., $P = D'\phi$).

$\phi \in \mathbb{R}^{M+1}$ = **State Price Vector** implied from D and P .

Note: Given ϕ , can price any traded asset (don't need \mathbb{P} or \mathbb{Q}).

Proposition Redundant securities $\Rightarrow \phi$ is **not unique**.

May find ϕ that are not $\gg 0$. If $\exists \phi \gg 0 \Rightarrow \exists$ arbitrage.

Definition (DCF/PV Formula) $P_n = \phi'D_n = \sum_{\omega} \phi_{\omega} D_{n\omega}$

Proposition $\phi \gg 0 \Rightarrow$ all AD prices are arbitrage-free.

Note: ϕ_{ω} = price of a hypothetical AD security (whose payoff may or may not be achievable).

If ϕ large in bad states \Rightarrow insurance.

Theorem (Stiemke's Lemma) $\exists \phi \gg 0$ ($\in \mathbb{R}^m$) s.t. $P' = \phi'D$
 $\iff \exists \theta \in \mathbb{R}^n$ s.t. $B\theta > 0$.

Example: (Incomplete Market) $D = (1, 2, 3)', P = 1$:
 $\Rightarrow \Phi = \{\phi \gg 0 : \phi'D = 1\} = \{\phi \gg 0 : \phi_1 + 2\phi_2 + 3\phi_3 = 1\}$.
Price $D_2 = (2, 2, 2)'$: P_2

Example: (Incomplete Market II) Find price P_b of new security with payoff b s.t. $b \notin \text{span}(D_1)$ (i.e., not redundant):
 $P_b = \{\phi_b : \phi \gg 0, P' = \phi'D_1\}$ i.e., $\inf_{\phi \in \Phi \gg 0} \phi_b < P_b < \sup_{\phi \in \Phi \gg 0} \phi_b$

If Security b is redundant: $P_b = \{P\theta : \theta \in \mathbb{R}^n, D_1\theta = b\} = \phi_b$.

Special Case – Complete Markets:

Proposition Complete market $\Rightarrow \phi = (D^{-1})'P$.

Theorem No Arbitrage $\Rightarrow \exists \phi \in \mathbb{R}^M$ s.t. $P' = \phi'D$.

Furthermore, \exists portfolio $\theta \in \mathbb{R}^N$ s.t. $\phi = D\theta$.

Note: If D has redundant columns: θ not unique BUT ϕ is unique

Proposition Complete Market + No Arbitrage $\Rightarrow \exists \phi \gg 0$.

State-Price Density/Risk Neutral Measure

Definition (Risk-Free Asset) Payoff: $D_1 = \mathbf{1}_M \in \mathbb{R}^M$ i.e., $D_{1\omega} = 1$, $\forall \omega \in \Omega$, with price $P_1 = \frac{1}{1+r^f} = \sum_{\omega=1}^M \phi_{\omega} = \phi'\mathbf{1}_M$.

Definition (Risk-Neutral Measure) $\mathbb{Q} = \{q_{\omega} : \omega \in \Omega\}$, where $q_{\omega} = \frac{\phi_{\omega}}{\sum_{\omega'} \phi_{\omega'}} = (1 + r^f) \phi_{\omega}$

Prop: $q_{\omega} > 0$, $\sum_{\omega} q_{\omega} = 1$ and $\mathbb{Q} \sim \mathbb{P}$ (agree on zero-measure sets).

Idea: Probabilities/riskiness hidden in state prices ϕ .

$\Rightarrow \mathbb{Q} = \text{normalized state prices} (\neq \mathbb{P} : \text{tied to data/observed})$.

Risk-Neutral Pricing:

1. $P' = \phi'D \Rightarrow$ get state prices ϕ .

2. Get RF rate: $1 + r^f = \frac{1}{\sum_{\omega} \phi_{\omega}}$.

3. Construct $\mathbb{Q} = \{q_{\omega} = \frac{\phi_{\omega}}{\sum_{\omega'} \phi_{\omega'}} = (1 + r^f) \phi_{\omega}\}$.

4. Price any asset with payoff vector D_n :

$P_n = \frac{\mathbb{E}^{\mathbb{Q}}[D_n]}{1+r^f} = \frac{1}{1+r^f} \sum_{\omega} q_{\omega} D_{n\omega}$.

5. Get **Expected Return**: $1 + \bar{r}_n = (1 + r^f) \frac{\mathbb{E}^{\mathbb{P}}[D_n]}{\mathbb{E}^{\mathbb{Q}}[D_n]}$.

Definition (State-Price Density/Stochastic Discount Factor η)

Idea: $P_n = \phi'D_n = \sum_{\omega} \phi_{\omega} D_{n\omega} = \sum_{\omega} p_{\omega} \frac{\phi_{\omega}}{p_{\omega}} D_{n\omega}$

$\Rightarrow \eta_{\omega} = \frac{\phi_{\omega}}{p_{\omega}}$, $\forall \omega \in \Omega$. **Prop:** $\eta_{\omega} > 0$, $\eta \in \mathbb{R}^M$, $\mathbb{E}^{\mathbb{P}}[\eta] = \frac{1}{1+r^f}$.

$\Rightarrow \eta = \text{PAIN INDEX!}$ η small \rightarrow good state; η big \rightarrow bad (how worried people are about the future)

Note: η is hard to observe (unless market is complete)

Proposition (P ~ Q) $\mathbb{E}^{\mathbb{P}}[X] = \frac{1}{1+r^f} \mathbb{E}^{\mathbb{Q}}\left[\frac{X}{\eta}\right]$, & $\phi_{\omega} = \frac{q_{\omega}}{1+r^f} = p_{\omega} \eta_{\omega}$

Note: $p_i > q_i \Rightarrow$ payoffs in state i are very valuable

Idea: η removes the probabilities from ϕ : it will add them with $\mathbb{E}^{\mathbb{P}}[\cdot]$.

SPD/SDF Pricing: you must know $\mathbb{P} = \{\phi_{\omega}\}$:

1. $P' = \phi'D \Rightarrow$ get state prices ϕ .

2. Get SPD/SDF: $\eta = \frac{\phi_{\omega}}{p_{\omega}}$.

3. Price any asset with payoff vector D_n :

$P_n = \mathbb{E}^{\mathbb{P}}[\eta D_n] = \sum_{\omega} p_{\omega} \eta_{\omega} D_{n\omega}$.

4. Get **Expected Return**: $1 + \bar{r}_n = \frac{\mathbb{E}^{\mathbb{P}}[D_n]}{\mathbb{E}^{\mathbb{P}}[\eta D_n]} = \frac{\mathbb{E}^{\mathbb{P}}[D_n]}{\mathbb{E}^{\mathbb{P}}[\eta D_n]}$.

5. Get RF rate: $1 + r^f = \frac{1}{\mathbb{E}^{\mathbb{P}}[\eta]}$.

Theorem (Representation Thm) \exists a positive pricing operator V
 $\iff \exists$ risk-neutral measure \mathbb{Q} & riskless asset r^f
 $\iff \exists$ SPD/SDF $\eta \gg 0$.

Discounted Cash Flow (DCF)/Present Value (PV) Formula:

Definition (Discount Rate/Expected Rate of Return)

$1 + \bar{r}_n = \frac{\mathbb{E}^{\mathbb{P}}[D_n]}{\mathbb{E}^{\mathbb{P}}[\eta D_n]} = (1 + r^f) \frac{\mathbb{E}^{\mathbb{P}}[D_n]}{\mathbb{E}^{\mathbb{Q}}[D_n]} = \frac{\mathbb{E}^{\mathbb{Q}}[D_n/\eta]}{\mathbb{E}^{\mathbb{Q}}[D_n]}$.

Definition (Rate of Return) Random $\bar{r}_n : r_{n\omega} = \frac{D_{n\omega}}{P_n} - 1$

Note: $\bar{r}_{1\omega} = r^f$, $\mathbb{E}^{\mathbb{P}}[\bar{r}_n] = \bar{r}_n$, and $1 + \bar{r}_n = \frac{D_n}{P_n}$

Definition (Risk Premium) $\pi_n = \mathbb{E}^{\mathbb{P}}[\bar{r}_n - r^f] = \bar{r}_n - r^f$.

Proposition (DCF/PV) $P_n = \frac{\mathbb{E}^{\mathbb{P}}[D_n]}{1 + \bar{r}_n} = \frac{\sum_{\omega} p_{\omega} D_{n\omega}}{1 + \bar{r}_n}$

$P_1 = \sum_{\omega} \phi_{\omega} = \frac{1}{1+r^f}$ and $\bar{r}_1 = \frac{\mathbb{E}^{\mathbb{P}}[D_1]}{P_1} - 1 = \frac{1}{P_1} - 1 = r^f$

Proposition (Risk Premium)

$\mathbb{E}^{\mathbb{P}}[1 + \bar{r}_n] = (1 + r^f) (1 - \text{Cov}^{\mathbb{P}}(\eta, 1 + \bar{r}_n))$

$\Rightarrow \pi_n = \mathbb{E}^{\mathbb{P}}[\bar{r}_n - r^f] = -(1 + r^f) \text{Cov}^{\mathbb{P}}(\eta, \bar{r}_n - r^f)$

and $\mathbb{E}^{\mathbb{Q}}[\bar{r}_n] = r^f \forall n \rightarrow \mathbb{E}^{\mathbb{Q}}[\bar{r}_n - r^f] = 0 \forall n$

(\cdot) $P_n = \mathbb{E}^{\mathbb{P}}[\eta D_n] \Rightarrow 1 = \mathbb{E}^{\mathbb{P}}[\eta D_n / P_n] = \mathbb{E}^{\mathbb{P}}[\eta(1 + \bar{r}_n)]$

$1 = \mathbb{E}^{\mathbb{P}}[\eta] \mathbb{E}^{\mathbb{P}}[(1 + \bar{r}_n)] + \text{Cov}^{\mathbb{P}}(\eta, 1 + \bar{r}_n)$

Idea: Asset performing well in bad times earns lower returns.

“-” sign: if make money in bad state (insurance): pay for it!

Corollary (Irrelevance of Idiosyncratic Risk)

Decomposition: $D_n = \text{Proj}(D_n|\eta) + \varepsilon_n$ where $\varepsilon \perp \eta$ & $\mathbb{E}[\varepsilon] = 0$.

$P_j = P_k \iff \text{Proj}(D_j|\eta) = \text{Proj}(D_k|\eta)$

Note: $\rho(\eta, D_n) = 0 \Rightarrow \bar{r}_n = r^f$ (but $\bar{r}_n \neq r^f$) and $P_n = \frac{\mathbb{E}^{\mathbb{P}}[D_n]}{1+r^f}$

Example: (Log-Normal Case) $\log \eta$ and $\log(1 + \bar{r}_n)$ jointly normal:

$\Rightarrow \mathbb{E}^{\mathbb{P}}[\log(1 + \bar{r}_n)] - \log(1 + r^f) + \frac{1}{2} \text{Var}^{\mathbb{P}}(\log(1 + \bar{r}_n)) =$

$- \text{Cov}^{\mathbb{P}}(\log \eta, \log(1 + \bar{r}_n))$

Theorem (Hansen-Jagannathan Bound) Sharpe Ratio of asset n :

$SR_n := \frac{\mathbb{E}^{\mathbb{P}}[\bar{r}_n - r^f]}{\sqrt{\text{Var}^{\mathbb{P}}(\bar{r}_n - r^f)}} \leq \frac{\sqrt{\text{Var}^{\mathbb{P}}(\eta)}}{\mathbb{E}^{\mathbb{P}}[\eta]}$

(\cdot) $\frac{\pi_n}{1+r^f} = -\text{Cov}^{\mathbb{P}}(\eta, \bar{r}_n - r^f) \leq -(-1) \cdot \sqrt{\text{Var}^{\mathbb{P}}(\eta)} \sqrt{\text{Var}^{\mathbb{P}}(\bar{r}_n - r^f)}$

Definition (Entropy of a r.v.) $X > 0$:

$L^{\mathbb{P}}(X) = \log \mathbb{E}^{\mathbb{P}}[X] - \mathbb{E}^{\mathbb{P}}[\log X] \geq 0$.

Theorem (Entropy Bound) $L^{\mathbb{P}}(\eta) \geq \mathbb{E}^{\mathbb{P}}[\log(1 + \bar{r}_n)] - \log(1 + r^f)$.

Note: Can observe $SR > 0.8 \Rightarrow \eta$ VERY volatile

Many models generate $\sigma(\eta)$ & $L^{\mathbb{P}}(\eta)$ much lower than bound

FTAP: Corporate Finance

Assumptions

- (1) Not restricted to financial assets (allow agents to invest in real productive opportunities)
- (2) Securities market: frictionless + complete
 - complete set of AD securities traded with price vector $\phi \gg 0$
- (3) Endowment $e = [e_0, e_1']'$.
- (4) Firms = only defined by the production technologies they possess y_0 : investment into the production opportunity at $t = 0$
- $y_{1\omega} = y_\omega(y_0)$, $\forall \omega \in \Omega$: output from production at $t = 1$, state ω
- Assume: $y_\omega(0) = 0$, $y'_\omega(\cdot) \geq 0$ and $y''_\omega(\cdot) < 0$ (diminishing returns)
- Production Vector: $y_1 = [y_{11}, \dots, y_{1M}]'$
- (5) Agent wants to maximize utility $u(c)$

Definition (Investment NPV) $v = \phi'y - y_0 = \sum_\omega \phi_\omega y_\omega(y_0) - y_0$

Definition (Agent's $t = 0$ Wealth)

$$w = e_0 - y_0 + \phi'(e_1 + y_1) = e_0 + \phi'e_1 + v$$

Definition (Agent's Optimization Pb) $\max_{y_0, c_0, c_1} u([c_0, c_1]')$

Solution: s.t. $w = c_0 + \phi'c_1$

(1) Choose y_0 to maximize $t = 0$ wealth (NPV of production)

FOC (dv/dy_0): $1 = \phi'y'(y_0) = \mathbb{E}^{\mathbb{P}} [\eta_\omega \cdot y'_\omega(y_0)] = \frac{1}{1+r^f} \mathbb{E}^{\mathbb{Q}} [y'_\omega(y_0)]$

$y(\cdot)$ concave $\Rightarrow v(\cdot)$ concave \Rightarrow unique solution

⇒ Optimal prod^o decision = indep of agent's consumption decisions!

Only depends on prod function & state prices

(2) Choose c to maximize utility $u(c)$

Corporate Investment Decisions:

Production opportunities are owned by firms:

$j = 1, \dots, F$ firms with Prod Tech $y_j(y_{j0}) \in \mathbb{R}^M$.

s_{kj} = share of firm j owned by agent k : $\sum_k s_{kj} = 1$, $\forall k$

Firm's investment NPV at $t = 0$: $v_j = \phi'y_j(y_{j0}) - y_{j0}$, $\forall k$

Agent k 's wealth: $w_k = e_{k0} + \phi'e_{k1} + \sum_j s_{kj} v_j$

Firm's investment decision: if firm j owned only by agent k ,

Decision on firm's investment = maximize v_j : $\phi'y_j(y_{j0}) \stackrel{!}{=} 1$

Decision is indep of agent's endowment & preferences

⇒ firm's optimal investment decision indep of who owns it.

Theorem (Maximize Current Market Value) Frictionless +

Complete market: \exists unanimity among firm's shareholders on investment decisions (maximize NPV) **separate ownership/mngmt!**

Financing Decisions (Capital Structure):

Definition (Financing Decision) How firm raises funds for investment

Definition (Capital Structure) Mix of securities issued by firm

Assumptions Firm financed by debt & equities:

(1) $d_0 = D$ debt issued at $t = 0$

(2) $e_0 = E$ shareholder's equity at $t = 0$

So: $y_0 = d_0 + e_0$

(3) $d_1 \in \mathbb{R}^M$ (debt & equity at $t = 1$): $y_1 = d_1 + e_1$

Proposition $D = \phi'd_1$, $E = \phi'e_1$ and $V = D + E = \phi'y_1$.

NPV(Equity) = $\phi'(y_1 - d_1) - e_0 = \phi'y_1 - (d_0 + e_0) = \phi'y_1 - y_0$

Theorem (Modigliani-Miller) Frictionless + Complete market: firm's NPV determined only by investment decisions (indep of cap structure)

Example: (Labor vs Wage) Firm: hire L labor at wage W \Rightarrow produce output $Y(L) = AL^\alpha$ ($\alpha < 1$), $\log A \sim N(\bar{A}, \sigma_A^2)$

Can borrow at r^f , and Log-SDF: $\log M = \delta + \varepsilon$, $\varepsilon \sim N(0, \sigma_\varepsilon^2)$

Assume correlation between $\log A$ and ε : $\sigma_{A\varepsilon}$.

Firm's problem: $\max_L -WL + \mathbb{E}[MAL^\alpha] \Rightarrow L = \left(\frac{\alpha \mathbb{E}[MA]}{W}\right)^{1/(1-\alpha)}$,

where: $\mathbb{E}[MA] = \exp\left(\delta + \bar{A} + \frac{1}{2}\sigma_A^2 + \underbrace{\frac{1}{2}\sigma_\varepsilon^2 + \sigma_{A\varepsilon}}_{\text{ignore if } \sigma_\varepsilon^2 \text{ is small}}\right)$

Math Tricks

Theorem (Iterated Expectations) X a r.v., $\mathcal{F}_1 \subset \mathcal{F}_2$ more info $\mathbb{E}[X|\mathcal{F}_1] = \mathbb{E}[\mathbb{E}[X|\mathcal{F}_2]|\mathcal{F}_1]$

Definition (Normal Distribution) $X \sim N(\mu, \sigma^2)$:

PDF: $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$.

Transfo: $Y = aX + b \Rightarrow Y \sim N(a\mu + b, a^2\sigma^2)$.

MGF: $M_X(t) = \mathbb{E}[e^{-tX}] = \exp(\mu t + \frac{1}{2}\sigma^2 t^2)$

Prop: $X \perp Y \Rightarrow M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$

Definition (Multivariate Normal) $X \sim N(\mu, \Sigma)$, $X, \mu \in \mathbb{R}^n$:

PDF: $f_X(x) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2}(x-\mu)' \Sigma^{-1} (x-\mu)\right)$.

MGF: $M_X(t) = \mathbb{E}[e^{-\sum_{i=1}^n t_i X_i}] = \exp(t'\mu + \frac{1}{2}t'\Sigma t)$, with $t \in \mathbb{R}^n$.

Correlation: X, Y jointly normal with corr ρ :

$M_{X+Y}(t) = \exp((\mu_1 + \mu_2)t + \frac{1}{2}(\sigma_1^2 + \sigma_2^2 + 2\rho)t^2)$

$\Rightarrow (X+Y) \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2 + 2\rho)$

Example: (CARA: Normal) $U = -\mathbb{E}[\exp(-aZ)]$, $Z \sim N(\mu, \sigma^2)$

$\Rightarrow U = -M_Z(a) = -\exp(-a\mu + \frac{1}{2}a^2\sigma^2) - \frac{1}{a} \log U = \mu - \frac{1}{2}a\sigma^2$

Example: (CRRA: Log-Norm) $U = -\mathbb{E}\left[\frac{Z^{1-\gamma}}{1-\gamma}\right]$, $Z \sim N(\mu, \sigma^2)$

$\Rightarrow U = \frac{1}{1-\gamma} M_{(1-\gamma)Z}(1) = \frac{1}{1-\gamma} \exp((1-\gamma)\mu + \frac{1}{2}(1-\gamma)^2\sigma^2)$

FTAP: Fundamental Value of a Stocks

Cash Flows: $X_t = D_t + P_t$ (dividends + share price)

Returns: $R_t = \frac{X_t}{P_t} = \frac{D_t + P_t}{P_t}$.

Assumptions No Arbitrage holds $\forall t \Rightarrow \exists \eta_{t+k} \forall k$

Theorem (PV of Future Stock Payoffs)

$P_t = \mathbb{E}^{\mathbb{P}} [\eta_{t+1}(P_{t+1} + D_{t+1})]$

$\Rightarrow P_t = \mathbb{E}^{\mathbb{P}} \left[\sum_{k=1}^{\infty} \eta_{t+k} D_{t+k} \right]$ with $\eta_{t+k} := \prod_{j=1}^k \eta_{t+j}$

& $P_t = \mathbb{E}^{\mathbb{Q}} \left[\sum_{k=1}^{\infty} \frac{D_{t+k}}{(1+r^f)^k} \right]$

(\therefore) $P_t = \mathbb{E}_t \left[\sum_{k=1}^T (\eta_{t+1} \dots \eta_{t+k}) D_{t+k} \right] + \mathbb{E}_t [\eta_{t+1} \dots \eta_{t+T} P_{t+T}] \rightarrow 0$

Definition (kth Period Return)

$\mathbb{E}_t^{\mathbb{P}} [R_{t:t+k}] = \frac{\mathbb{E}_t^{\mathbb{P}} [D_{t+k}]}{\mathbb{E}_t^{\mathbb{P}} [\eta_{t:t+k} D_{t+k}]} = \frac{\mathbb{E}_t [\text{Payoff}]}{\text{Price}}$

$\Rightarrow P_t^{(k)} = \mathbb{E}^{\mathbb{P}} [\eta_{t:t+k} D_{t+k}] = \mathbb{E}_t^{\mathbb{P}} [D_{t+k}] / \mathbb{E}_t^{\mathbb{P}} [R_{t:t+k}]$

→ Price of 1 dividend k periods in future

Theorem (DCF of Future Stock Payoffs)

$P_t = \mathbb{E}^{\mathbb{P}} \left[\sum_{k=1}^{\infty} \eta_{t+k} D_{t+k} \right] = \sum_{k=1}^{\infty} \mathbb{E}_t^{\mathbb{P}} [D_{t+k}] / \mathbb{E}_t^{\mathbb{P}} [R_{t:t+k}]$

FTAP: Fixed Income Securities

Idea: Assume default-free securities (e.g., US T-Bills)

Definition (Bond) Coupon payments + principal/par/face value

No coupon → **Zero-Coupon/Pure-Discount Bond**

Zero-Coupon Bonds (ZCB):

$P_{N,t} =$ price of N -period bond at time t that pays $FV = 1\$$ at $t + N$.

Proposition Any N -period default-free coupon bond = portfolio of zero coupon bonds: $\text{Price}_t = \sum_{j=1}^N C_{F,t+j} \cdot P_{j,t}$

Assumptions $\eta = \eta(s)$ depends on state variable at t

(1st order) Markov State Variables: $s_t \in \{1, \dots, S\}$.

$\pi(s_{t+1}, s_t) := \mathbb{P}(s_{t+1} = s | s_t, \text{past}) = \mathbb{P}(s_{t+1} = s | s_t)$

$\Rightarrow P_{N,t} = P_N(s_t)$ (price depends on maturity + state only)

No Arbitrage: Price = \mathbb{E} [discounted payoffs]

Proposition (1 period) Take $N = 1$, state $s_t = j$:

$P_{1,t} = P_1(j) = \mathbb{E}_t [\eta_{t+1}]$

(\therefore) $P_1(j) = \sum_{s=1}^S \mathbb{P}(s_{t+1} = s | s_t = j) \eta(s) \cdot (1\$) = \sum_{s=1}^S \pi(s, j) \eta(s)$

Proposition (N periods)

$P_{N,t} = \mathbb{E}_t [\eta_{t+1} P_{N-1,t+1}] = \mathbb{E}_t [\eta_{t+1} \times \dots \times \eta_{t+N}] = \mathbb{E}_t [\eta_{t:t+N}]$

(\therefore) $P_2(s_t) = \sum_{s=1}^S \pi(s_{t+1}, s_t) P_1(s_{t+1}) = \mathbb{E}_t [\eta_{t+1} \mathbb{E}_{t+1} [\eta_{t+2}]]$

Yield Curve (YC) / Term Structure of Interest Rates:

Definition (YTM) For ZCB, Yield To Maturity = per-period gross discount rate → geom. avg of cumul return (hold ZCB until maturity)

$Y_{N,t} = \left[\frac{1}{P_{N,t}} \right]^{1/N} = [\text{payoff}/\text{price}]^{1/N} \rightarrow P_{N,t} = \left[\frac{1}{Y_{N,t}} \right]^N$

Prop: Prices & Yields/returns move in opposite directions

Definition (Log-Framework) $p_{N,t} = \log P_{N,t}$, $y_{N,t} = \log Y_{N,t}$

Prop: $y_{N,t} = -\frac{1}{N} p_{N,t} \iff p_{N,t} = -N \cdot y_{N,t}$

Definition (Elasticity) of the bond price w.r.t. the yield:

$\frac{dp_{N,t}}{dy_{N,t}} = -N \Rightarrow$ long maturity ZCB is more sensitive to same change in y

Properties

- YTM = avg rate of return over the life of the loan: YTM across maturities → different units.

- ZCB prices: $P_{N,t} =$ exchange rate between 1\$ today & 1\$ at $t + N$.

- $\frac{p_{2,t}}{p_{1,t}} = \frac{18_{t+2}}{18_{t+1}}$ low ⇒ cheap to transfer cash from $t + 1$ to $t + 2$

Ex: recession at t which will end by $t + 2$

Proposition (YC Recipe) $P_{N,t} = \mathbb{E}_t [\eta_{t:t+N}]$: YC ⇔ moments of SDF

(1) Define State Variables: x_t (data → need at least 3).

(2) Assume SDF $\eta_t = \eta(x_t)$ or Log SDF $m_t = \log \eta_t$.

(3) Give law of motion for x_t under \mathbb{P} (use $\pi(x_{t+1}, x_t)$)

OR Give law of motion for x_t under \mathbb{Q} (use r^f)

(4) **Sol^o:** Iterate on $p_{N,t} = \log \mathbb{E}_t [\exp(m_{t+1} + p_{N-1,t+1}) | x_t]$

Use: $(x_{t+1} | \mathcal{F}_t) \sim N(\mu + \phi x_t, \sigma)$ and $(m_{t+1} | \mathcal{F}_t) \sim N(-x - \frac{1}{2}(\frac{\lambda}{\sigma})^2 + \frac{1}{2}(\frac{\lambda}{\sigma})^2, \frac{\lambda}{\sigma})$

$p_{1,t} = \log \mathbb{E}_t [\exp(m_{t+1})] = -x - \frac{1}{2}(\frac{\lambda}{\sigma})^2 + \frac{1}{2}(\frac{\lambda}{\sigma})^2 = 0 - 1 \cdot x$

⇒ **Short Rate:** $x_t = y_{1t} = \log(1 + r^f) \rightarrow$ mean-reverting AR(1)

$p_{2,t} = \log \mathbb{E}_t [\exp(m_{t+1} + p_{1,t+1})] = \log \mathbb{E}_t [\exp(m_{t+1} - x_{t+1})]$

$= -(1 + \phi)x_t + \left[-\frac{1}{2}(\frac{\lambda}{\sigma})^2 + \mu + \frac{1}{2}(\frac{\lambda}{\sigma} + \sigma)^2\right] = A_2 + B_2 \cdot x_t$

(5) **Guess** $p_{n,t} = A_n + B_n \cdot x_t$:

$p_{n,t} = A_n + B_n \cdot x_t \Rightarrow p_{n+1,t} = A_{n+1} + B_{n+1} \cdot x_t$ with:

$B_n = -1 + \phi B_{n-1} = -\frac{1-\phi^n}{1-\phi}$

$A_n = A_{n-1} + B_{n-1}(\mu - \lambda) + \frac{1}{2}B_{n-1}^2\sigma^2$

Example: (Cox-Ingersoll-Ross, 1985)

(1) **One State Variable:** x_t

(2) **Assume Log SDF:** $m_{t+1} = -x_t - \frac{1}{2}(\frac{\lambda}{\sigma})^2 x_t - (\frac{\lambda}{\sigma})^2 x_t^{0.5} \varepsilon_{t+1}$.

(3) **Under \mathbb{P} :** $x_{t+1} = \mu + \phi x_t + \sigma x_t^{0.5} \varepsilon_{t+1}$; with $\phi < 1$, $\varepsilon_t \stackrel{\text{iid}}{\sim} N(0, 1)$

(4) **Sol^o:** Iterate on $p_{N,t} = \log \mathbb{E}_t [\exp(m_{t+1} + p_{N-1,t+1}) | x_t]$

Use: $(m_{t+1} | x_t) = cst - (\frac{\lambda}{\sigma}) x_t^{0.5} \varepsilon_{t+1}$ and $(p_{N-1,t+1} | x_t) \perp \varepsilon_{t+1}$

$\Rightarrow (m_{t+1} + p_{N-1,t+1} | x_t) \sim N(\mathbb{E}_t[m_{t+1} + p_{N-1,t+1}], \text{SD}_t[m_{t+1} + p_{N-1,t+1}])$

$\Rightarrow p_{N,t} = \mathbb{E}_t [m_{t+1} + p_{N-1,t+1}] + \frac{1}{2} \text{Var}_t [m_{t+1} + p_{N-1,t+1}]$

$\Rightarrow p_{N,t} = \mathbb{E}_t [m_{t+1} + p_{N-1,t+1}] + \frac{1}{2} \text{Var}_t [m_{t+1}]$

$+ \frac{1}{2} \text{Var}_t [p_{N-1,t+1}] + \text{Cov}_t (m_{t+1}, p_{N-1,t+1})$

$\Rightarrow p_{1,t} = \mathbb{E}_t [m_{t+1}] + \frac{1}{2} \text{Var}_t [m_{t+1}]$ therefore:

$p_{1,t} = p_{1,t} + \mathbb{E}_t [p_{n,t+1}] + \frac{1}{2} \text{Var}_t [p_{n,t+1}] + \text{Cov}_t (m_{t+1}, p_{n,t+1})$

$= -x_t - \frac{1}{2}(\frac{\lambda}{\sigma})^2 x_t + \frac{1}{2}(\frac{\lambda}{\sigma})^2 x_t = -x_t$

⇒ **Short Rate:** $x_t = y_{1t} = \log(1 + r^f) \rightarrow$ mean-reverting AR(1)

(5) **Guess** $p_{n,t} = A_n + B_n \cdot x_t$, therefore:

$p_{n+1,t} = p_{1,t} + \mathbb{E}_t [p_{n,t+1}] + \frac{1}{2} \text{Var}_t [p_{n,t+1}] + \text{Cov}_t (m_{t+1}, p_{n,t+1})$

$= -x_t + [A_n + B_n(\mu + \phi x_t)] + \frac{1}{2} [B_n^2 \sigma^2 x_t] + [-B_n \lambda x_t]$

$= \underbrace{[A_n + \mu B_n]}_{A_{n+1}} + \underbrace{[-1 + (\phi - \lambda) B_n + (1/2) \sigma^2 B_n^2] x_t}_{B_{n+1}}$

$= \underbrace{A_{n+1}}_{A_{n+1}} + \underbrace{B_{n+1}}_{B_{n+1}}$

Proposition (Bond Pricing with Real Returns)

Real: $SDF = \eta_t^r$, Price = $P_t^r \rightarrow P_{n,t}^r = \mathbb{E}_t \left[\eta_{t+1}^r P_{n-1,t+1}^r \right]$
Nominal: $SDF = \eta_t$, Price = P_t and **Price Level:** Π_t

$$\Rightarrow P_{n,t} = P_{n,t} \Pi_t = \mathbb{E}_t \left[\eta_{t+1}^r P_{n-1,t+1} \frac{\Pi_t}{\Pi_{t+1}} \right]$$

$$\eta_{t+1}^r = \eta_{t+1}^r \frac{\Pi_t}{\Pi_{t+1}} =: \eta_{t+1}^r \frac{1}{1+r_{t+1}}$$

Proposition (Fisher Eq.) If inflation risk uncorrelated with risk: $\frac{1}{1+r_t} (1 + \mathbb{E}_t[\pi_{t+1}]) = \frac{1}{1+r_t} \Rightarrow r_t \approx i_t - \mathbb{E}_t[\pi_{t+1}]$

(\therefore) Take expectation above: $\mathbb{E}_t[\eta_{t+1}(1 + \pi_{t+1})] = \mathbb{E}_t[\eta_{t+1}^r \cdot 1]$

FTAP: Options

Definition (Derivative Security) Contract whose value derives from the price of another security or observable outcome.

Definition (Underlying Asset) X_t = Payoff of asset at time $T > t$, s.t. $f(X_T)$ = payoff of derivative security at $T > t$, $f(\cdot)$ known.

Note: Payoff at $T > t$ can be path dependent: $f(X_{t+1}, \dots, X_T)$

Proposition (Derivative Price) Given $\eta: P_t^D = \mathbb{E}_t[\eta_{t:T} \cdot f(X_T)]$

Note: Often, derivative = redundant asset \Rightarrow use replicating portfolio

Definition (Long Forward Contract) Obligation to buy an underlying asset at a pre-specified price K at time T .

Prop: Payoff = $S_T - K$

Definition (Credit Default Swaps) Insure debt-holder against losses from default.

Definition (Interest Rate Swaps) Insure investor against interest rate risk: exchange (fixed set of cash payments)
 \longleftrightarrow (floating payments tied to interest rates)

Proposition (Arrow-Debreu) • AD security = derivative security

(\therefore) Underlying Asset = is the state of nature \rightarrow see HW2-Q3b

• ANY Derivative = Portfolio of AD securit: $P^D = \sum_{\omega=1}^M \phi_{\omega} \cdot f(X_{\omega})$

Options:

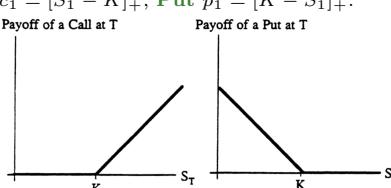
Definition (Stock/Underlying Asset)

S_0 = price at $t = 0$ S_T (or S) = payoff at $t = 1$.

Definition (European Call/Put Option) On the stock:
Contract giving buyer the right to buy/sell stock from/to seller of option at $t = T$ & price K .

$T = 1$: maturity/exercise date ; K = strike/exercise price

Payoff: Call $c_1 = [S_1 - K]_+$, Put $p_1 = [K - S_1]_+$.



Example: Payoff Depends on Price of Underlying Asset at $t = 1$

Straddle (V) = call(K) + put(K): $[S - K]_+ + [K - S]_+$

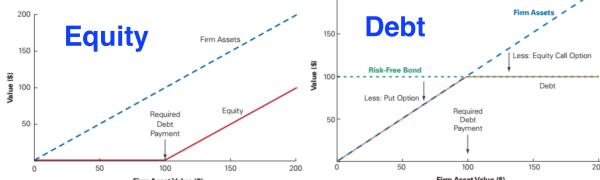
Butterfly (Δ) = call($K - \delta$) - 2 calls(K) + put($K + \delta$):

$[S - K + \delta]_+ - 2[S - K]_+ + [K - S - \delta]_+$

*** Let D_0 = required debt payment on firm:

Equity = Call option on assets of firm: $E = [A - D_0, 0]_+$

Debt = RF Bond - put option on assets: $D = D_0 - [D_0 - A]_+$



Definition (Intrinsic Value) Call: $I = S - K$; Put: $I = K - S$

In-The-Money: $I > 0, S > K$ (call), $K > S$ (put)

At-The-Money: $I = 0, S = K$ (call), $K = S$ (put)

Out-of-The-Money: $I < 0, S < K$ (call), $K < S$ (put)

Pricing Properties:

Proposition (Arbitrage Pricing Properties of Options)

$c(S, K) = V(c_1)$: call price ; $p(S, K) = V(p_1)$: put price

• Option prices are ≥ 0 : $c(S, K) \geq 0$ and $p(S, K) \geq 0$.

• $c(S, K) \nearrow$ in K and $p(S, K) \nearrow$ in K .

(\therefore)

$\forall K_1 > K_2 \Rightarrow c(S, K_1) = V([S - K_1]_+) \leq V([S - K_2]_+) = c(S, K_2)$

• $c(S, K)$ and $p(S, K)$ are convex in K .

(\therefore) $c(S, K) = \sum_{\omega} \phi_{\omega} (S_{\omega} - K)_{+}$

$$\Rightarrow c(S, \lambda K + (1 - \lambda) K') = \sum_{\omega} \phi_{\omega} (S_{\omega} - \lambda K - (1 - \lambda) K')_{+} \leq \sum_{\omega} \phi_{\omega} [\lambda (S_{\omega} - K)_{+} + (1 - \lambda) (S_{\omega} - K')_{+}]$$

Proposition (Portfolio of Options) Let $\theta > 0$: portf of N assets; Price $S = [S_1, \dots, S_N]'$ > 0 ; Strike $K = [K_1, \dots, K_N] > 0$. Then, $c(S', \theta, K') \leq \sum_{i=1}^N \theta_i c(S_i, K_i)$ and $p(S', \theta, K') \leq \sum_{i=1}^N \theta_i p(S_i, K_i)$

Note: Option on a portfolio \leq Portf of options on assets in portfolio

(\therefore) Payoff of option on portfolio $= [(S - K')' \theta]_+ = [\sum_i (S_i - K_i) \theta_i]_+ \leq \sum_i [S_i - K_i]_+ \theta_i$ = payoff of portfolio of options on each assets

Proposition (Option Price Bounds) $S \geq c(S, K)$

If \exists riskless bond r^f : $\left[S - \frac{K}{1+r^f} \right]_+ \leq c(S, K) \leq S$

(\therefore) Long 1 stock; Short K bonds.

Payoff = $S - K$ ($t = 1$) ; Price = $S - K/(1 + r^f)$ ($t = 0$)

$$c_1 = [S - K]_+ \geq S - K \Rightarrow c(S, K) = V(c_1) \geq S - K/(1 + r^f)$$

Proposition (Put-Call Parity) If \exists riskless bond r^f :

No Dividend: $c(S, K) + \frac{K}{1+r^f} = p(S, K) + S$

With Dividend: D at $t = 0$: $c(S, K) + \frac{K}{1+r^f} + D = p(S, K) + S$

(\therefore) • Long 1 Call(K) + K Bonds

• Long 1 Put(K) + 1 Stock

\Rightarrow SAME Payoff at $t = 1$: K (if $S \leq K$) and S (if $S > K$)

Early Exercise:

Definition (American Option) Buyer can exercise at any $t \leq T$.

Price: $C(S, K)$ American Call , $P(S, K)$ American Put

Assume: $t_0 = T - 1$: can exercise now or wait \leftrightarrow European option

Prop: $C(S, K) \geq c(S, K)$; $P(S, K) \geq p(S, K)$ ($'>$ if $\mathbb{P}(\text{early exerc}) > 0$)

Definition (Dividend) Payoff prior from the stock (before maturity)

\Rightarrow Dividends can influence early exercise & value of American opts

Proposition (No Dividend: Call) $r^f > 0 \Rightarrow$ Do NOT exercise early

(\therefore) $c_1^{early} = S - K \leq S - \frac{K}{1+r^f} \leq \left[S - \frac{K}{1+r^f} \right]_+ = c_1^{eur}$

1st Ineq: Pay strike price now, not later. Last Ineq: Give up the opt not to exerc at maturity $\Rightarrow V(c_1^{early}) \leq V(c_1^{eur})$

Proposition (No Dividend: Put) $r^f > 0 \Rightarrow$ CAN exercise early

(\therefore) $P(S, K) = \max\{K - S, p(S, K)\} = \max\left\{K - S, \frac{K}{1+r^f} - S + c(S, K)\right\}$

Optimal if: $\frac{r^f}{1+r^f} K \geq c(S, K)$. Ex: K much bigger than S

Gain: Get strike price now, not later.

Loss: Give up the opt not to exercise at maturity

Proposition (With Dividend: Call) $D = \text{Divid} (t = 0)$, $S = \text{ex-divid price}$

Call: $C(S, D, K) = \max\{S + D - K, c(S, K)\}$

Put: $P(S, D, K) = \max\{K - S - D, p(S, K)\}$

(\therefore) American Call: 2 choices at $t = 0$

1) Exercise & get: dividend $D + S$ (sell stock ex-dividend)

2) Hold option to maturity ($t = 1$).

\Rightarrow Divid induce early exerc for calls & delay early exerc for puts

Complete Markets:

Recall: Complete Market $\Rightarrow \exists$ a unique state price vector ϕ .

Note: If \exists RF bond, then market is complete.

Proposition (European Call Price) $c(S, K) = \frac{\mathbb{E}^Q [S - K]_+}{1+r^f}$

(\therefore) $c(S, K) = \sum_{\omega} \phi_{\omega} (S_{\omega} - K)_{+}$, where S_{ω} = stock price, $t = 1$, state ω

Theorem (Binomial Pricing)

Assume: \exists RF bond w/: $t = 1$ payoff 1, $t = 0$ price $B = \frac{1}{1+r^f}$

Stock price: binomial process $S_1 = uS$ (w.p.p) and $S_1 = dS$ (w.p.1 - p)

Note: $u \& d$ = gross return on stock: NA $\Rightarrow d < 1 + r^f < u$

$\Rightarrow c(S, K) = \phi_u [uS - K]_+ + \phi_d [dS - K]_+$ with

$$\begin{cases} c_u = [uS - K]_+ \\ c_d = [dS - K]_+ \end{cases} \quad \begin{cases} \phi_u = \frac{1}{1+r^f} \frac{1+r^f - d}{u - d} \\ \phi_d = \frac{1}{1+r^f} \frac{u - 1 - r^f}{u - d} \end{cases} \quad \begin{cases} S = \phi_u uS + \phi_d dS \\ \frac{1}{1+r^f} = \phi_u + \phi_d \end{cases}$$

Corollary (Replication Proof) Portfolio $\theta = [\theta_S, \theta_B]'$

$$\Rightarrow c(S, K) = \theta_S S + \theta_B \frac{1}{1+r^f} = \frac{1}{1+r^f} \left(\frac{1+r^f - d}{u - d} c_u + \frac{u - 1 - r^f}{u - d} c_d \right)$$

with $\begin{cases} \text{payoff}_u = \theta_S uS + \theta_B \frac{1}{u} = c_u \\ \text{payoff}_d = \theta_S dS + \theta_B \frac{1}{d} = c_d \end{cases}$

Corollary (Risk-Neutral Proof) Given State Prices ϕ :

$$c(S, K) = \frac{\mathbb{E}^Q [S - K]_+}{1+r^f} = \frac{qc_u + (1-q)c_d}{1+r^f} \quad (\therefore) \quad q = \frac{\phi_u}{\phi_u + \phi_d} = \frac{1+r^f - d}{1+r^f - u}$$

Market Structure - Completing Markets with Options:

Definition (State-Index Security - SIS) Security/Portfolio with state-separating payoff X : $X_{\omega} = X_{\omega'}$ $\Leftrightarrow \omega = \omega'$

Assume: WLOG $X_{\omega} < X_{\omega'}$ $\forall \omega < \omega'$

Example: (European Option on SIS) Eur. Call Option on SIS X :

Strike Price: $K = X_{\omega} \Rightarrow$ **Payoff:** (nonzero for states $\geq \omega + 1$)

$$c_1 = [X - X_{\omega}]_+ = [0, \dots, 0, X_{\omega+1} - X_{\omega}, \dots, X_M - X_{\omega}]' \in \mathbb{R}^M$$

Proposition (Completing Markets) **Assume:** One SIR $X > 0$ and $(M - 1)$ options on the SIR with strike prices X_1, \dots, X_{M-1}

$$\begin{bmatrix} X_1 & 0 & 0 & \dots & 0 \\ X_2 & X_2 - X_1 & 0 & \dots & 0 \\ X_3 & X_3 - X_1 & X_3 - X_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ X_M & X_M - X_1 & X_M - X_2 & \dots & X_M - X_{M-1} \end{bmatrix}$$

Payoff: $D = [X_{\omega+1} - X_{\omega}]$ full rank \Rightarrow Complete Market

$$\begin{bmatrix} \delta & 0 & \dots & 0 \\ 2\delta & \delta & \dots & 0 \\ \dots & \dots & \dots & \dots \\ M\delta & (M-1)\delta & \dots & \delta \end{bmatrix}$$

Note: Get AD Security/State- ω contingent claim with butterfly (Δ): Long 1 Call($(\omega - 1)\delta$), Short 2 Calls ($\omega\delta$), Long 1 Call($(\omega + 1)\delta$)

\Rightarrow pays δ only in state ω : Payoff = $[0, \dots, \omega, \dots, 0]$

Get State prices & risk-neutral measure:

$$\phi_{\omega} = \frac{1}{\delta} [(c(K_{\omega+1}) - c(K_{\omega})) - (c(K_{\omega}) - c(K_{\omega-1}))]$$

Price of ANY security with payoff D :

$$P_{\omega} = \sum_{\omega} \phi_{\omega} \tilde{D}_{\omega} \rightarrow \int_0^{\infty} \frac{\partial^2 c(K)}{\partial K^2} \tilde{D}(K) dK$$

$$\Rightarrow S = \int_0^{\infty} \frac{\partial^2 c(K)}{\partial K^2} X(K) dK \text{ and } B = \int_0^{\infty} \frac{\partial^2 c(K)}{\partial K^2} \cdot 1 dK$$

Recover \mathbb{Q} measure: $q(K) = \frac{\partial^2 c(K)}{\partial K^2} / \int_0^{\infty} \frac{\partial^2 c(K)}{\partial K^2} dK$; VIX = STD(\mathbb{Q})

Exact Arbitrage Pricing Theory (APT)

Idea: Price redundant assets using set of prices of base securities.

\Rightarrow Put constraints on SDF η : restrict co-movements of CFs

Beta/Expected Return Decomposition:

Theorem (FTAP Recall) Assume NO Redundant Asset:

$NA \Rightarrow \exists \phi^* \in \mathbb{R}^M$ s.t. $P' = (\phi^*)' D$, where $\phi^* = D\theta$ for some $\theta \in \mathbb{R}^N$

Note: If rank(D) = N , then $D' D$ full rank: $P' = \theta' D' D \theta$.

$$\Rightarrow \theta^* = (D' D)^{-1} P, \phi^* = D(D' D)^{-1} P \text{ and } \eta^* = \phi^* \text{Diag}(p)^{-1}$$

Proposition (SDF Mimicking Portfolio) Assume $\exists r^f$:

Construct portf mimicking η : $r_{-\eta} = \mathbb{E}^P [r_{-\eta}] - (\eta - \mathbb{E}^P [\eta]) = cst - \eta^*$

Furthermore, $\eta = \mathbb{E}^P [r_{-\eta}] + \mathbb{E}^P [\eta] - r_{-\eta}$

Note: $r_{-\eta}$ achieves H-J bound: maximum Sharpe Ratio!

(\therefore) (1) Construct Portfolio with payoff η^* : Price = $-\sum_{\omega=1}^M \phi_{\omega}^* \eta_{\omega}^*$

(2) Want Payoff = Return i.e., investing 1\$ gives return $(1 + r_{-\eta})$:

\rightarrow Need to invest $1 + \sum_{\omega=1}^M \phi_{\omega}^* \eta_{\omega}^*$ in RF asset.

Proposition (E[returns] Decomposition)

Fund. Asset Pricing Eq: $\pi_n = \mathbb{E}^{\mathbb{P}}[r_n - r^f] = -(1 + r^f)\text{Cov}^{\mathbb{P}}(\eta, r_n - r^f)$
 $\Rightarrow \pi_n = \mathbb{E}^{\mathbb{P}}[r_n - r^f] = \frac{\text{Cov}^{\mathbb{P}}(r_n, r - \eta)}{\text{Var}^{\mathbb{P}}(\eta)} \cdot \lambda = \beta_n \cdot \lambda$
 with $\lambda := \mathbb{E}^{\mathbb{P}}[r - \eta] - r^f = (1 + r^f)\text{Var}^{\mathbb{P}}(\eta)$
 $(\because) \lambda = \mathbb{E}^{\mathbb{P}}[r - \eta] - r^f = -(1 + r^f)\text{Cov}^{\mathbb{P}}(\eta, -\eta) = (1 + r^f)\text{Var}^{\mathbb{P}}(\eta)$
 $\eta = \mathbb{E}^{\mathbb{P}}[r - \eta] + \mathbb{E}^{\mathbb{P}}[\eta] - r - \eta = (\lambda + r^f) + \frac{1}{1+r^f} - r - \eta$
 $\Rightarrow \eta = \lambda + \frac{1}{1+r^f} - (r - \eta - r^f) \Rightarrow \pi_n = +(1 + r^f)\text{Cov}^{\mathbb{P}}(r - \eta, r_n)$

Definition (Market Price of Risk) λ = market $(r - \eta)$ risk premium
 \rightarrow compensation an investor receives per unit of exposure to SDF

Definition (SDF Risk Exposure/Loading)

β_n = loading of asset n on $(r - \eta - r^f)$

Prop: Asset n 's expected return depends only on its loading β_n

Proposition (OLS Estimation of β_n) $\hat{\beta}_n = \frac{\text{Cov}(r_n, r - \eta)}{\text{Var}(r - \eta)}$

(\because) Assume IID realizations of returns indexed by t . Do OLS on:
 $r_{n,t} - r^f = \alpha_n + \beta_n(r_{-n,t} - r^f) + \varepsilon_{n,t}$ with $\mathbb{E}[\varepsilon_{n,t}|r - \eta - r^f] = 0$

Definition (Idiosyncratic Risk) $r_{n,t} - r^f = \alpha_n + \beta_n(r_{-n,t} - r^f) + \varepsilon_{n,t}$
 $= (\text{abnormal ret}) + (\text{co-mvmt w/ SDF's excess ret } r - \eta) + (\text{idiosyncr})$

Proposition (Var Deco) $\text{Var}(r_n - r^f) = \beta_n^2 \text{Var}(r - \eta - r^f) + \text{Var}(\varepsilon_n)$
 \Rightarrow Variance = systematic/priced var + unpriced/residual var

Assumptions (Joint Hypothesis) No Arb + Correct SDF model $r - \eta, t$
 \Rightarrow Stocks w/ different $\varepsilon_{n,t}$ & same β_n earn same return $r_{n,t}$
 $\Rightarrow \alpha_n = 0!$ If get $\alpha_n > 0$: reject BOTH hypoth: \exists Arb OR bad SDF

Definition (Security Market Line - SML) Plot: $\mathbb{E}[r_n]$ vs. β_n
 Slope = λ (market price of risk)

Factor Structure:

Assumptions M states, N securities w/ payoff matrix D

- \exists RF security (assume $n = 1$ is the RF asset)
- $\text{rank}(D) = K \leq M \rightarrow \exists$ redundant assets

Definition (Factor Structure) F = Basis for D

$F = [F_1, \dots, F_K] \in \mathbb{R}^{M \times K}$, and $F_k \in \mathbb{R}^{M \times 1}$

Definition (Betas of Payoffs on Factors) $\beta_Z \in \mathbb{R}^K$

Payoff Space $C = \text{span}(D) = \{D\theta : \theta \in \mathbb{R}^N\}$

$\Rightarrow \forall Z \in C, \exists \beta_Z = [\beta_{Z1}, \dots, \beta_{ZK}]'$ s.t. $Z = F\beta_Z$

Any payoff $Z \in C$ can be spanned by the factors: $Z = F\beta_Z$

Conversely: Any factor can be replicated by securities in D : $F_k = D\theta_k$

Proposition (Factor Pricing) \exists coeffs $\lambda = [\lambda_1, \dots, \lambda_K] \in \mathbb{R}^K$

s.t. $V(Z) = \lambda' \beta_Z = \sum_{k=1}^K \lambda_k \beta_{Zk}, \forall Z \in C$.

(\because) NA $\Rightarrow \exists V(\cdot)$ linear: $V(Z) = V(\sum_k \beta_{Zk} F_k) = \sum_k \beta_{Zk} V(F_k)$

Note: $\lambda_k = -V(F_k)$ is INDEPENDENT of Z !

$\Rightarrow F_k$ = risk factors & λ_k = market price of risk

Definition $n = 1, \dots, N$ Securities:

- **Gross Return:** $R_n = D_n/P_n \in \mathbb{R}^M$
- **Market Structure:** $R = [R_1, \dots, R_N] \in \mathbb{R}^{M \times N}$
- $\bar{R}_n = \mathbb{E}^{\mathbb{P}}[R_n] \in \mathbb{R}^M, \bar{R} = [\bar{R}_1, \dots, \bar{R}_N] \in \mathbb{R}^{M \times N}$
- $\varepsilon_n = R_n - R_n \in \mathbb{R}^M, \varepsilon = [\varepsilon_1, \dots, \varepsilon_N] \in \mathbb{R}^{M \times N}$
- $\beta_n \in \mathbb{R}^K, \beta = [\beta_1, \dots, \beta_N] \in \mathbb{R}^{K \times N}$

Proposition (Factor Pricing for Returns) Assume $\mathbb{E}^{\mathbb{P}}[\varepsilon_n] = 0$:

$R_n = \bar{R}_n + \varepsilon_n = \bar{R}_n + F\beta_n = \bar{R}_n + \sum_{k=1}^K F_k \beta_{nk}$

$\Rightarrow R = \bar{R} + \varepsilon = \bar{R} + F\beta$ (so need $\mathbb{E}^{\mathbb{P}}[F\beta] = 0$)

\rightarrow One RF factor $i := F_1 = \mathbf{1}_M$ and $(K - 1)$ risk factors

Example: (2-Securities) Gross returns:

Security 1: $1 \rightarrow \begin{cases} 1 \text{ w.p. 0.5} \\ 1 \text{ w.p. 0.5} \end{cases}$ Security 2: $1 \rightarrow \begin{cases} 1/2 \text{ w.p. 0.5} \\ 2 \text{ w.p. 0.5} \end{cases}$

$\bar{R}_1 = 0.5(1 + 1) = 1$ and $\bar{R}_2 = 0.5(1/2 + 2) = 1.25$

$R_n = \bar{R}_n + \varepsilon_n \Rightarrow \varepsilon_0 = [0, 0]'$ and $\varepsilon_1 = [-0.75, 0.75]'$

Risk-free factor: $F_0 = [1, 1]'$. Only 1 Risk factor: $\varepsilon_1 = F_1 \cdot \beta_1$

$\Rightarrow F_1 = [-1, 1]', \beta_1 = 0.75$

Lemma • The value of any gross return is 1: $V(R_n) = \frac{\mathbb{E}^{\mathbb{Q}}[R_n]}{R^f} = 1$
 (\because) Asset Payoff = D : $V(D) = \frac{\mathbb{E}^{\mathbb{Q}}[D]}{R^f} \Rightarrow V(R) = \frac{1}{R^f} \mathbb{E}^{\mathbb{Q}}\left[\frac{D}{V(D)}\right] = 1$

Note: I pay 1\$ today, get back R_n tomorrow

- The value of the sure Gross Return is 1: $V(R^f) = V(1 + r^f) = 1$
- Under Q: $\mathbb{E}^{\mathbb{Q}}[R_n] = R^f \Rightarrow \mathbb{E}^{\mathbb{Q}}[R_n] - R^f = 0$

Theorem (Exact APT) Let $R_n = \bar{R}_n + F\beta_n, n = 1, \dots, N$, where:

(1) $F = [F_1, \dots, F_K]$ (K risk factors, $\mathbb{E}^{\mathbb{P}}[K] = 0$)

(2) $\beta_n = [\beta_{n1}, \dots, \beta_{nK}]'$ (asset n 's beta)

N.A. $\Rightarrow \bar{R}_n - R^f = \bar{r}_n - r^f = \sum_{k=1}^K \lambda_k \beta_{nk} = \lambda' \beta_n, n = 1, \dots, N$
 where $\lambda_k = -\mathbb{E}^{\mathbb{Q}}[F_k]$ and $\lambda = [\lambda_1, \dots, \lambda_K]'$

$(\because) R^f = \mathbb{E}^{\mathbb{Q}}[R_n] = \mathbb{E}^{\mathbb{Q}}[\bar{R}_n + \sum_{k=1}^K F_k \beta_{nk}] = \bar{R}_n + \sum_{k=1}^K \beta_{nk} \mathbb{E}^{\mathbb{Q}}[F_k]$

Definition (Portfolio Beta) Given portfolio θ :

Its beta on risk Factor k : $\beta_k = \sum_{i=1}^K \theta_i \beta_{ik}$

Definition (Factor Mimicking Portfolio)

Portfolio θ_k s.t. $\beta_{ki} = \delta_{ki}$ ($i = 1, \dots, K$)

Prop: For each factor F_k , \exists a factor portfolio θ_k

Corollary θ_k Factor Portfolio $\Rightarrow F_k = R_k - \bar{R}_k = r_k - \bar{r}_k$

Definition (Factor Premium) $\lambda = \bar{R}_k - R^f = \bar{r}_k - r^f$

\Rightarrow Expected excess return on factor portfolio

Proposition $\bar{r}_n - r^f = \sum_{k=1}^K \lambda_k \beta_{nk} = \sum_{k=1}^K \beta_{nk} (\bar{r}_k - r^f)$,
 where $\lambda_k = \bar{r}_k - r^f$: risk premium of k 'th factor portfolio

(\because) Under Exact APT, use factor portfolio

General Arbitrage Pricing Theory (APT)

Exact-APT Issue: Need Complete Market ($K = M$) \Rightarrow large #factors

Idea: We want:

- Model: large M (# states) & N (# assets) BUT small K (# factors)
- Study implications of No Asymptotic Arbitrage (NAA)

General Factor Model:

Assumptions (Factor Model for Returns) Suppose:

$r_n = \bar{r}_n + \sum_{k=1}^K \beta_{nk} F_k + \varepsilon_n$, for $n = 1, \dots, N$

with: (1) $\mathbb{E}^{\mathbb{P}}[F_k] = \mathbb{E}^{\mathbb{P}}[\varepsilon_n] = \mathbb{E}^{\mathbb{P}}[\varepsilon_n | F_k] = 0, \forall k, n$

(2) $\mathbb{E}^{\mathbb{P}}[\varepsilon_n^2] = \sigma_n^2 < v < \infty$, and $\mathbb{E}^{\mathbb{P}}[\varepsilon_n \varepsilon_{n'}] = 0 \forall n \neq n'$

Note: Exact Model: $\varepsilon_n = 0$ for all n

Note: (Matrix Notation) Let $r = \bar{r} + F\beta + \varepsilon$ where:

(1) $\mathbb{E}^{\mathbb{P}}[F] = \mathbb{E}^{\mathbb{P}}[\varepsilon] = \mathbb{E}^{\mathbb{P}}[\varepsilon | F] = 0$

(2) $\Sigma := \mathbb{E}^{\mathbb{P}}[\varepsilon' \varepsilon] = \text{Diag}(\sigma_1, \dots, \sigma_N)$

$r = [r_1, \dots, r_N] \in \mathbb{R}^{M \times N}, \bar{r} = [\bar{r}_1, \dots, \bar{r}_N] \in \mathbb{R}^{M \times N}$

$F = [F_1, \dots, F_K] \in \mathbb{R}^{M \times K}, \varepsilon = [\varepsilon_1, \dots, \varepsilon_N] \in \mathbb{R}^{M \times N}$

$\beta_n = [\beta_{n1}, \dots, \beta_{nK}]' \in \mathbb{R}^K, \beta = [\beta_1, \dots, \beta_N] \in \mathbb{R}^{K \times N}$

Proposition (Variance Decomposition) Under Current Model:

$\text{Var}^{\mathbb{P}}(r_n) = \beta_n' \mathbb{E}^{\mathbb{P}}[F'F] \beta_n + \text{Var}^{\mathbb{P}}(\varepsilon_n)$

$\text{Cov}^{\mathbb{P}}(r_i, r_j) = \beta_i' \mathbb{E}^{\mathbb{P}}[F'F] \beta_j$ for all $i \neq j$ (\because $\text{Cov}^{\mathbb{P}}(\varepsilon_i, \varepsilon_j) = 0$)

Diversification:

Definition (Return on a Portfolio) $r_\theta = \bar{r}_\theta + F\beta_\theta + \varepsilon_\theta$

where: $r_\theta = \theta r, \bar{r}_\theta = \theta \bar{r}, \beta_\theta = \theta \beta, \varepsilon_\theta = \theta \varepsilon$

Definition (Well Diversified Portfolio) $\theta \in \mathbb{R}^N$ Well-Diversified if:

$\theta_n = O(1/n)$, where $\theta = [\theta_1, \dots, \theta_N]', \theta' \mathbf{1}_N = \sum_{n=1}^N \theta_n = 1$.

Note: $\theta_n = O(1/n) \Leftrightarrow n \cdot \|\theta\|^\infty < \infty$

Definition (Well Diversified Sequence of Portfolios)

$\{\theta_n\}_{n=1}^\infty$, with $\theta_n' \mathbf{1}_n = \sum_{i=1}^n \theta_{ni} = 1$, is Well-Diversified

$\Leftrightarrow \exists k \in (0, \infty)$, s.t. $\theta_{n,i}^2 < \kappa/n^2, \forall i = 1, \dots, n, \forall n \geq 1$

Note: $\theta_n = [\frac{1}{n}, \dots, \frac{1}{n}]'$ = diversified, but $[0, \dots, 1, \dots, 0]'$ = concentrated

Definition (Equally-Weighted Portfolio) $\theta = [\frac{1}{N}, \dots, \frac{1}{N}]'$

Prop: $\text{Var}^{\mathbb{P}}(\theta' r) = \text{Var}^{\mathbb{P}}\left(\sum_{n=1}^N \frac{1}{N} r_n\right) = \frac{1}{N} \left[\frac{1}{N} \sum_{n=1}^N \text{Var}^{\mathbb{P}}(r_n)\right]$

$+ (1 - \frac{1}{N}) \left[\frac{1}{N(N-1)} \sum_{n=1}^N \sum_{n' \neq n} \text{Cov}^{\mathbb{P}}(r_n, r_{n'})\right]$

If $r_n = \bar{r} + F + \varepsilon_n$, $\text{Var}^{\mathbb{P}}(\varepsilon_n) = \sigma_n^2$:

$\Rightarrow \text{Var}^{\mathbb{P}}(\theta' r) = \frac{1}{N} \sigma^2 + (1 - \frac{1}{N}) \text{Var}^{\mathbb{P}}(F) \rightarrow \text{Var}^{\mathbb{P}}(F)$

Idea: Covariance with risk affects an asset's risk premium. Should only price systematic risk (explains returns' variation across all assets). But can \exists non-priced syst risk (e.g. linear comb of β s not associated with changes in $\mathbb{E}[\text{ret}]$, $\lambda_k = 0$ for some k in APT) ex: Risk Neutr ppl

Theorem (Diversification Thm) $\{\theta_n\}_{n=1}^\infty$ well div portfs seq:

$\text{Var}^{\mathbb{P}}(\varepsilon_{\theta_n}) = \text{Var}^{\mathbb{P}}\left(\sum_{i=1}^n \theta_{ni} \varepsilon_i\right) \rightarrow 0$ at rate $O(1/n)$ (i.e. $n \cdot \|\theta_i\| < C$)

Note: Well Div portfs have only systematic/factor risks (no idiosyncr)

General APT:

Definition (Asymptotic Arbitrage—AA) $\{\theta_n\}_{n=1}^\infty$ Portfs seq s.t.

(1) Self Financed: $\mathbf{1}' \theta_n = 0$

Note: AA = arbitrage in the limit.

(2) $\mathbb{E}^{\mathbb{P}}[r_{\theta_n}] \rightarrow \alpha > 0$

For n finite, portf carries tiny risk

(3) $\text{Var}^{\mathbb{P}}(r_{\theta_n}) \rightarrow 0$

Volatility may not be a sufficient measure of risk.

Prop: NAA \Rightarrow NA?

Theorem (General APT)

Given: K-Factors Model for security returns + NAA

$\Rightarrow \exists r^f \in \mathbb{R}, \lambda = [\lambda_1, \dots, \lambda_K]' \in \mathbb{R}^K$ s.t.:

$\sum_{i=1}^n [\bar{r}_i - (r^f + \lambda' \beta_i)]^2 = \sum_{i=1}^n [\bar{r}_i - (r^f + \sum_{k=1}^K \lambda_k \beta_{ik})]^2 < A < \infty$

NAA \Rightarrow approx. factor pricing: $\bar{r}_i - r^f \approx \sum_{k=1}^K \lambda_k \beta_{ik}$

Note: So pricing error $\delta \neq 0$ only for small nb of assets: $\sum_i \delta_i^2 < A < \infty$

(\cdot) 1 Factor: project $\bar{r} \in \mathbb{R}^n$ on $(1_n, \beta)$ $\rightarrow \bar{r} = a_0 1_n + a_1 \beta + \delta$ where $\delta \in \mathbb{R}^n$, $\delta' 1_n = 0$ (self-financing portf) and $\delta' \beta = 0$ (by \perp proj.)

Note: $\beta = \delta' \beta = 0 \Rightarrow \delta$ portf has NO factor risk.

Take $\delta = b\delta$ for some $b > 0$: also self-financing

$\Rightarrow \mathbb{E}^{\mathbb{P}}[\bar{r}_\delta] = \mathbb{E}^{\mathbb{P}}[b\delta' r] = b\delta' \bar{r} = b\delta' (a_0 1_n + a_1 \beta + \delta) = b\delta' \delta = b\|\delta\|^2$

and $\text{Var}^{\mathbb{P}}(\bar{r}_\delta) = \text{Var}^{\mathbb{P}}(b\delta' r) = b^2 \delta' \Sigma_n \delta < b^2 \delta' \delta = b^2 \|\delta\|^2$

Fix $b = 1/\|\delta\|^2 \Rightarrow \mathbb{E}^{\mathbb{P}}[\bar{r}_\delta] = 1 & \text{Var}^{\mathbb{P}}(\bar{r}_\delta) < v/\|\delta\|^2 \rightarrow 0 \Rightarrow \text{AA}!$

Corollary (General APT: Well-Diversified Case) NAA + Well Div

\Rightarrow **Exact** factor pricing $\bar{r}_i - r^f = \sum_{k=1}^K \lambda_k \beta_{ik}$, $\forall i$

Corollary (General APT: Implications) For large N , Small K :

\Rightarrow APT applies to most (not all) securities:

$\bar{r}_i - r^f = \sum_{k=1}^K \beta_{ik} (\bar{r}_k - r^f) = \sum_{k=1}^K \lambda_k \beta_{ik}$

where β_{ik} = factor loading of asset i on factor k

& $\lambda_k = \bar{r}_k - r^f$ = risk premium of factor k mimicking portfolio

\Rightarrow "APT \Leftrightarrow SDF model affine in factors: $\eta = a + Fb"$

Testing APT & Linear SDF Models:

Idea: Test if $\mathbb{E}[\text{returns}]$ lie on the SML implied by factor's $\mathbb{E}[\text{return}]$

Data: (usually monthly) T-bill rates & asset + factor returns

Example: (Time-Series Approach)

GOAL: Regress asset's $r_n - r^f$ on factors: is $\alpha = 0$?

Assume: β_{ik} cst over time \rightarrow beta_{portf} more stable than beta_{asset}

• Run times series regression for tradable asset/portfolio i :

$r_{i,t} - r^f_t = \alpha_i + \sum_{k=1}^K \beta_{ik} (r_{k,t} - r^f_t) + \varepsilon_{i,t}$, for $t = 1 \dots T$

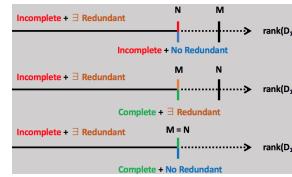
• Test if $\alpha_i = 0$ & jointly test if $\{\alpha_i\}_{i=1}^N = 0$

Example: (Cross-Sectional Approach)

GOAL: Make empirical counterpart to SML: β estimates explain \bar{r}_n

In Practice

- Payoff Space Spanned by Securities:** $C_1(D) = \{c_1 = D\theta : \theta \in \mathbb{R}^N\} = \text{span}(D_1, \dots, D_N)$
- Complete Market:** $\iff \text{span}(D) = \mathbb{R}^M \iff \text{rank}(D) = M$
 $\iff \forall c_1 \in \mathbb{R}^M, \exists \theta \in \mathbb{R}^N \text{ S.T. } D\theta = c_1$
- Arrow-Debreu Securities:** $D^{AD} := \mathbb{I}_{N \times N}$ (complete market)
 \rightarrow construct using portfolio $\theta = D^{-1}$ (\therefore) $D\theta = \mathbb{I} = D^{AD}$
 \rightarrow State Prices: $\phi = (D^{-1})'P$
- Arbitrage Existence:** $\iff \exists \theta \in \mathbb{R}^N \text{ s.t. } B\theta > 0$.
Type 1: $B\theta = [0, > 0]'$ free at $t = 0$, maybe paid at $t = 1$
Type 2: $B\theta = [> 0, \geq 0]'$ paid at $t = 0$, maybe paid at $t = 1$
- Proposition** Market Equilibrium $\implies \exists$ arbitrage
 \therefore invest ∞ amount in it \implies no equilibrium
Warning: \exists arbitrage $\not\implies$ Market Equilibrium
- State Price Vectors:** (consistent with NA) $P' = \Phi' D$.
- Rank of D_1 :** $M = \# \text{states}, N = \# \text{assets}, D_1 = M \times N$.
 - rank(D_1) < N
 $\implies \exists$ redundant
 - rank(D_1) < M
 $\implies \text{Im}(D_1) \subsetneq \mathbb{R}^M$ Incompl
 - rank(D_1) = $N = M$
 \implies Complete + \exists redundant
- Feasible Set of Investor Choices:** $B(e_0, \{D_1, P\})$
 - Complete, No redund:** rank(D_1) = $M = N$
 $\implies \theta = D^{-1}(c_1 - e_1)$
 $\implies B(e, \{D_1, P\}) = \{c_1 \in \mathbb{R}_+^M : P'D_1^{-1}(c_1 - e_1) \leq e_0\}$.
 - Complete & redund:** rank(D_1) = $M < N$
 $\implies \exists \tilde{D}_1 (M \times M)$ full rank & $A(M \times (N - M))$ s.t.
 $D_1 = [\tilde{D}_1', (\tilde{D}_1 \times A)']'$
 $\implies (\tilde{c}_1 + \hat{e}_1) = (\tilde{e}_1 + \hat{e}_1) + \tilde{D}_1 \hat{\theta} + \tilde{D}_1 A \hat{\theta}$
 $\implies \hat{\theta} = \tilde{D}_1^{-1}(\tilde{c}_1 - \tilde{e}_1) \text{ & } \hat{\theta} = (A'A)^{-1} A' \tilde{D}_1^{-1}(\hat{c}_1 - \hat{e}_1)$
 $\implies B(e, \{D_1, P\}) = \{\tilde{c}_1, \hat{e}_1 \in \mathbb{R}_+^M :$
 $P' \tilde{D}_1^{-1}(\tilde{c}_1 - \tilde{e}_1) + P'(A'A)^{-1} A' \tilde{D}_1^{-1}(\hat{c}_1 - \hat{e}_1) \leq e_0;$
 $\hat{c}_1 = \hat{e}_1 + \tilde{D}_1 A(A'A)^{-1} A' \tilde{D}_1^{-1}(\hat{c}_1 - \hat{e}_1)\}$
 - Incomplete, no redund:** rank(D_1) = $N < M$
 $\implies \exists \tilde{D}_1 (N \times N)$ full rank & $\hat{D}_1 ((M - N) \times N)$ s.t.
 $D_1 = [\tilde{D}_1', \hat{D}_1']' \implies \theta = \tilde{D}_1^{-1}(\tilde{c}_1 - \tilde{e}_1)$
 $\implies B(e, \{D_1, P\}) = \{[\tilde{c}_1', \hat{e}_1'] \in \mathbb{R}_+^M :$
 $P' \tilde{D}_1^{-1}(\tilde{c}_1 - \tilde{e}_1) \leq e_0;$
 $\hat{c}_1 = \hat{e}_1 + \tilde{D}_1 \hat{D}_1^{-1}(\hat{c}_1 - \hat{e}_1)\}$



Optimal Portfolio Choices

Idea: Before: “reduced form” of course.
 \implies Now: build bottom-up micro-founded model

Expected Utility (E.U.) Theory

Preferences:

Idea: How agents use the fin market to best meet their econ needs

Definition (Consumpt^o Set) $C = \{c = [c_0, c_1]' \in \mathbb{R}^{1+M}\} \subseteq \mathbb{R}^{1+M}$

Definition (Rational Preference)

Binary relat \succ^k over consumpt $C = \mathbb{R}_+^{1+M}$ s.t.

Complete: $a, b \in C \implies a \succ^k b$ or $b \succ^k a$ or both.

Reflexive: $a \in C \implies a \succ^k a$

Transitive: $a \succ^k b$ & $b \succ^k c \implies a \succ^k c$

Axiom (Continuity) $\forall c \in C : \{a \in C : a \succ c\} \& \{b \in C : b \preccurlyeq c\}$ closed
 $\iff \forall \{a_n\} \rightarrow a, \{b_n\} \rightarrow b \in C : a_n \succ b_n \Rightarrow a \succ b$

Axiom (Intransitivity) $a > b \implies a \succ b$ (more \succ less)

Axiom (Convexity) $\forall a, b, c \in C, \forall \alpha \in (0, 1) :$
 $a \succ b \& c \succ b \implies \alpha a + (1 - \alpha)c \succ b$

Prop: Convex $\succ \implies$ convex sets of preferred bundles $\{a \in C : a \succ c\}$

Definition (Utility Function) $u : C \rightarrow \mathbb{R}$, s.t.

$a, b \in C : a \succ b \iff u(a) \geq u(b)$.

Strictly Monotonic: $u(c) > u(c')$, $\forall c \succ c'$.

Prop: Insatiability $\implies u$ is strictly \nearrow , $u' > 0$

Indifference Curve: Plot u on a c_1 vs. c_0 plane

Theorem (Debreu) $C \subseteq \mathbb{R}^{1+M}$ closed & cnvx, \succ rational + cont
 $\implies \succ$ can be represented by a continuous utility function u on C .

Definition (Expected Utility) over a consumption path/lottery
 $u(c, p) = \sum_{\omega \in \Omega} p_{\omega} u_{\omega}(c_0, c_1 \omega), \forall c \in C$.

Consumption Lotteries consumption in each state + probas (c, p)

Note: u depends on prob of future states

Upper-Contour Set: Indiff curve separates upper/lower region.

Von Neumann Morgenstern (vNM) utility: $u_{\omega}(c_0, c_1 \omega)$

Prop: u & $u(c, p)$ are ordinal; u_{ω} is cardinal!

Prop: u invariant w.r.t. \nearrow transfos; u_{ω} invariant w.r.t. affine transfos

Axiom (Continuity) \forall consumption $c \in C$, probas p_a, p_b, p_c :

$[c, p_a] \succ [c, p_b] \succ [c, p_c] \implies \exists \alpha \in (0, 1) : [c, p_b] \succ [c, (1 - \alpha)p_a + \alpha p_c]$

Axiom (Independence) \forall consumption $c \in C, \alpha, p_a, p_b, p_c \in (0, 1) :$
 $[c, p_a] \succ [c, p_b] \implies [c, (1 - \alpha)p_a + \alpha p_c] \succ [c, (1 - \alpha)p_b + \alpha p_c]$

Theorem (vNM, 1944) \succ on (C, \mathbb{P}) has a EU representation

$\iff \succ$ rational + continuous + independent

$\implies u(c, p) = \sum_{\omega \in \Omega} p_{\omega} u_{\omega}(c_0, c_1 \omega)$

Assumptions (State Independence) $u_{\omega}(c_0, c_1 \omega) = u(c_0, c_1 \omega)$

Assumptions (Time Additivity) $u(c_0, c_1 \omega) = u(c_0) + \rho u(c_1 \omega)$
 where $\rho \in (0, 1]$ is an (optional) time preference/discount coeff

Assumptions (No Complement/Substitute) $\frac{\partial^2 u_{\omega}(c_0, c_1 \omega)}{\partial c_0 \partial c_1 \omega} = 0$

Assumptions (State Indep + Time Add for Exp. Util)

$u(c, p) = u(c_0) + \rho \sum_{\omega \in \Omega} p_{\omega} u(c_1 \omega)$ with $\rho \in (0, 1)$

Definition (Marginal Utility) At consumption level c : $u'(c)$

Prop: Insatiability $\implies u'(\cdot) > 0$ (so $u \nearrow$)

Definition (Concave Function)

$u(\alpha x + (1 - \alpha)x') \geq \alpha u(x) + (1 - \alpha)u(x')$

Prop: u concave & twice differentiable $\iff u'' \leq 0, u' \nearrow$

Theorem (Concavity) \succ with Continuity + Indep + Convexity ax:
 \succ can be represented by a discounted expected utility function

$u(c, p) = u(c_0) + \rho \sum_{\omega \in \Omega} p_{\omega} u(c_1 \omega) \implies u(\cdot) \text{ concave}$

(\therefore) Let consumpt^o plan (c_0, c_1) with $c_{1\omega} = c_1$ (sure lottery at $t = 1$):
 $u(c_0) + \rho u(c_1 \omega) = \mu \implies u'(c_0) + \rho u'(c_1 \omega) c_{1\omega}'(c_0) = 0$

$\implies u''(c_0) + \rho u''(c_1 \omega) c_1'(c_0)^2 = -\rho u'(c_1 \omega) c_1''(c_0)$

Note: $c_1(c_0)$ is LB of convex set in $\mathbb{R}^2 \implies c_1''(c_0) \geq 0$ (convex)

Along ray $c_0 = c_1 = c$: $u''(c)(1 + \rho c_1'(c)^2) = -\rho u'(c)c_1''(c) \leq 0$

Risk-Aversion

Definition (Fair Gamble) r.v. x s.t. $\mathbb{E}[x] = 0$

Definition (Risk Aversion) Agent with E.U. $u(\cdot)$ is risk-averse

$\iff \mathbb{E}[u(w+x)] \leq \mathbb{E}[u(w)]$ for any $\mathbb{E}[x] = 0$

Note: RA \implies Sure Payoff \succcurlyeq Risky Payoff w/ Same Mean

Proposition (Concavity of u) Agent (strict) RA $\iff u$ (strict) concave

$(\because) \iff \forall w_1 < w_2, p \in (0, 1)$: Bern Gamble $x = \{x_1, x_2\}$ w.p. $(p, 1-p)$

s.t. $x_1 = -(1-p)(w_2 - w_1)$ and $x_2 = p(w_2 - w_1) \implies \mathbb{E}[x] = 0$

Let $w = pw_1 + (1-p)w_2$: so $w_1 = w + x_1, w_2 = w + x_2$

RA $\implies pu(w_1) + (1-p)u(w_2) \leq u(w) = pu(w_1 + (1-p)w_2)$ concave

$\iff u$ concave Jensen $\mathbb{E}[u(w+x)] \leq u(w + \mathbb{E}[x]) = u(w) \implies$ RA

Measures of Risk Aversion:

Definition (Risk Premium) x fair gamble, agnt w/ EU u , wealth w : Risk Prem π required by agnt to take gamble: $\mathbb{E}[u(w+x)] = u(w - \pi)$

Note: $\pi =$ amount of wealth an agent ok to give up to get rid of risk

Certainty Equivalent: $u(w_{CE}) = \mathbb{E}[u(w)]$ Prop: $\pi = \mathbb{E}[w] - w_{CE}$

$(\because) u(w_{CE}) = \mathbb{E}[u(w)] = u(\mathbb{E}[w - \pi - x]) = u(w - \pi)$

Definition (Absolute Risk Aversion) $A(w) = -\frac{u''(w)}{u'(w)}$

Prop: Small Gamble x : $\pi \approx \frac{1}{2} A \cdot \text{Var}(x)$

$(\because) \mathbb{E}[u(w+x)] = u(w) + \frac{1}{2} A \cdot \text{Var}(x) + o(x^2)$
 $\stackrel{!}{=} u(w - \pi) = u(w) - u'(w)\pi + o(\pi)$

Note: $A(w)$ associated w/ risk premium per unit of absolute risk

Risk Tolerance: $T(w) = 1/A(w)$

Definition (Relative Risk Aversion) $R(w) = -w \frac{u''(w)}{u'(w)}$

Prop: Small Risk wx : $\pi_R \approx \frac{1}{2} R \cdot \text{Var}(x)$

$(\because) \mathbb{E}[u(w(1+x))] = u(w(1 - \pi_R))$

Note: risk premium \propto R x size of the risk (as a fract^o of wealth)

Theorem (Pratt) Agents 1 & 2 w/ EU u_1 & u_2 :

$A_1(w) \geq A_2(w) \forall w \iff u_1(u_2^{-1}(\cdot))$ concave
 $\iff \exists f$ s.t: $f' > 0, f'' \leq 0 \& u_1(w) = f(u_2(w))$

$\iff \pi_1 \geq \pi_2, \forall w$ & fair gambles x

$(\because) f(z) = u_1(u_2^{-1}(z)), w = u_2^{-1}(z) \implies f(z) = \frac{u'_1 u_2^{-1}}{u'_2 u_2^{-1}}(z) > 0$

$(1) \implies (2) f''(z) = -[A_1(w) - A_2(w)] \frac{u'_1(w)}{u'_2(w)^2} \leq 0$ for $A_1 \geq A_2$

$(2) \implies (3)$ Take $f(z) = u_1(u_2^{-1}(z))$

$(3) \implies (4) u_1(w - \pi_1) = \mathbb{E}[u_1(w+x)] = \mathbb{E}[f(u_2(w+x))]$

[Jensen: f concave] $\leq f(\mathbb{E}[u_2(w+x)]) = f(u_2(w - \pi_2))$

$(4) \implies (1)$ Small gambles x : $\pi \propto A$ so trivial. Large gambles: Paper!

Examples of Risk Aversion:

Definition (CARA) Constant Absolute RA: $A'(w) = 0$

Definition (IARA/DARA) Incr/Decr Absolute RA: $A'(w) \gtrless 0$

Definition (CRRA) Constant Relative RA: $R'(w) = 0$

Definition (IRRA/DRRA) Incr/Decr Relative RA: $R'(w) \gtrless 0$

Example: (Linear EU) $u(w) = w$

\implies **Risk Neutral** agents: $A(w) = R(w) = 0$

Example: (Negative Exponential EU) $u(w) = -e^{-aw}, a > 0$

Example: (CARA) agents: $A(w) = a, R(w) = aw$

Example: (Quadratic EU) $u(w) = w - 0.5aw^2, a > 0, w \in [0, 1/a]$

\implies **IARA** agents: $A(w) = \frac{a}{1-aw}, R(w) = \frac{aw}{1-aw}$

Example: (Log EU) $u(w) = \log w$

\implies **CRRA** agents: $A(w) = 1/w, R(w) = 1$

Example: (Power EU) $u(w) = \frac{1}{1-\gamma}w^{1-\gamma}, \gamma > 1$

\implies **CRRA** agents: $A(w) = \gamma/w, R(w) = \gamma$ Prop: $\gamma \rightarrow 1 \Rightarrow$ Log EU

Example: (Hyperbolic CARA EU) $u(w) = a + b \left(d + \frac{w}{\gamma}\right)^{1-\gamma}$

\implies **HARA** agents: $A(w) = \frac{1}{d+w/\gamma}, R(w) = \frac{w}{d+w/\gamma}, T(w) = d + \frac{w}{\gamma}$

Prop: Risk Neutral ($d = -\infty$), Quadr ($\gamma = -1$),

Neg Exp ($\gamma \rightarrow \infty, d = \frac{1}{\alpha}$), Log ($d = 0, \gamma = 1$), Power ($d = 0, \gamma < 1$)

Optimal Consumption/Portfolio Choice

Assumptions (Setting) N non-redund assets, payoff D , price P
Agent: Endow $e = [e_0, e_1']'$, Consumpt plan $c = [c_0, c_1']'$, Portf θ

EU: $u(c) = u_0(c_0) + \mathbb{E}[u_1(c_1)]$ with $u'_t > 0$, $u''_t < 0$ ($t = 0, 1$)
Inada Condition: $\lim_{c \rightarrow 0} u'_t(c) = \infty$ (no need to assume $c \geq 0$)

Proposition (Agent's Optimization Pb) $\max_{\theta} u_0(c_0) + \mathbb{E}[u_1(c_1)]$
s.t. $c_0 = e_0 - P'\theta$
 $c_1 = e_1 + D\theta$

Theorem (Existence of Optimal Portf) Agent Optimization Pb:
 \exists solution \iff No Arb in market $\{D, P\}$

(\cdot) \iff If \exists Arb: agent can achieve unbounded consumpt^o levels:
 \iff If \exists Arb: $\exists \phi \gg 0$ s.t. $P' = \phi' D$

Consumption financed by θ is $[-P'\theta, (D\theta)']'$

Agent's Budget: $B(e) = \{c \geq 0 : c = e + [-\phi' D\theta, (D\theta)']', \theta \in \mathbb{R}^N\}$

Use: $\hat{B}(e) = \{c \geq 0 : c = e + [-\phi' d, d']', d \in \mathbb{R}^M\}$ (with $N \leq M$)

Note: $B(e) = \{c \in \hat{B}(e) : d = D\theta\} \subseteq \hat{B}(e)$, $B(e) = \hat{B}(e) \iff M = N$

Now: $\hat{B}(e)$ bdd for $\phi \gg 0 \implies B(e)$ bdd + closed $\implies B(e)$ compact
 u, u_0, u_1 continuous over compact $B(e) \implies \max$ exists

Special Case: Complete Markets:

Assumptions

Complete set of AD securities, State Price $\phi \gg 0$

Agent: endowment $e = [e_0, e_1']'$, wealth $w = e_0 + \phi' e_1$

Budget: $B(e) = \{c : c_0 + \phi' c_1 = w\}$ (Simplify: ignore $c \geq 0$)

Marginal cost = ϕ_ω : Additional \$1 in asset $\omega \implies c_{1\omega} \nearrow$ by $1/\phi_\omega$

Proposition (Optimization) $\max_{c_0 + \phi' c_1 = w} u_0(c_0) + \sum_{\omega} p_{\omega} u_1(c_{1\omega})$

Lagrang: $\mathcal{L} = u_0(c_0) + \sum_{\omega} p_{\omega} u_1(c_{1\omega}) - \lambda [c_0 + \phi' c_1 - w] \rightarrow \partial c_0, \partial c_1$

FOC: $\lambda = u'_0(c_0) \rightarrow$ marginal value of wealth

$\lambda \phi_\omega = p_{\omega} u'_1(c_{1\omega}) = \frac{\partial \mathcal{L}}{\partial \theta_\omega} \rightarrow$ margin benefit of $\nearrow c_{1\omega} = \theta_\omega D_{1\omega}$

Note: At optim: relative marg utils for consumpt^o in diff states/asset = their relative prices

$\eta_\omega = \frac{\phi_\omega}{p_{\omega}} = \frac{u'_1(c_{1\omega})}{u'_0(c_0)} =$ intertemp marg rate
of substitution, $\phi_{\omega'} = \frac{p_{\omega'} u'_1(c_{1\omega'})}{p_{\omega} u'_1(c_{1\omega})}$

Proposition u_t strictly concave

$\implies u'_t$ strictly \searrow & u'^{-1}_t exists

Theorem (Optimal Portfolio Choice) Solve FOC:

$c_0 = u'^{-1}_0(\lambda)$ and $c_{1\omega} = u'^{-1}_1(\lambda \frac{\phi_\omega}{p_{\omega}}) \forall \omega \in \Omega$

where λ solves budget constraint: $w = e_0 + \phi' e_1 = c_0(\lambda) + \phi' c_1(\lambda)$

Theorem Complete Market, agnts w/ insatiable + strictly concave EU:

$c_{1\omega} < c_{1\omega'} \iff \frac{\phi_\omega}{p_{\omega}} > \frac{\phi_{\omega'}}{p_{\omega'}} \quad (\text{for all } \omega, \omega' \in \Omega, \forall k)$

Note: At optimum: levels of consumption in diff states are ranked inversely by SPD $\eta \rightarrow$ High pain $\eta_\omega \Rightarrow$ Low consumpt^o $c_{1\omega}$

General Equilibrium: Lucas Tree Model (1978):

Assumptions Agents w/ identical prefs + endowments

- Complete Market: agents can freely trade resources over time/states
- Market Clearing: aggreg consumpt^o $\sum_k c_k = \sum_k e_k$ aggreg endow

PROBLEM: Find Equilibrium State Prices + Risk-Free Rate

Prop: FOC + Market Clearing $\implies \frac{u'_1(c_{1\omega})}{u'_0(c_0)} = \frac{u'_1(c_{1\omega})}{e'_0(c_0)} = \frac{\phi_\omega}{p_{\omega}} = \eta_\omega$

Note: Denom known \implies randomness in η_ω depends on $u'(c_{1\omega})$

$u'(c_{1\omega}) \searrow$ w/ $c_{1\omega}$ so: High Pain \Rightarrow High Marg Util \Rightarrow Low $c_{1\omega} = e_{1\omega}$

Example: (Special Case) $e_{1\omega} = e_1$ & $u_1(c) = \delta u_0(c) =: \delta u(c)$

\implies constant SPD $\eta_\omega = \frac{\delta u'(c_{1\omega})}{u'(c_0)} =: \frac{1}{1+r^f}$

So: $1 + r^f > \frac{1}{\delta} \implies c_1 > c_0$ (ppl prefer to smooth consumption out)

Note: cst aggregate consumption $\implies 1 + r^f = 1/\delta$

No uncertainty: high growth + abundant resources \Rightarrow interest rates $< \frac{1}{\delta}$

Example: (CRRA) $e_{1\omega} := \bar{c}_1 + \varepsilon_\omega$, $\mathbb{E}[\varepsilon_\omega] = 0$:

$$u(c) = \frac{c^{1-\gamma}}{1-\gamma} \implies u'(c) = c^\gamma \implies u''(c) = -\gamma c^{-\gamma-1}$$

$$\implies u''(c) = \gamma(1+\gamma)c^{-\gamma-2} > 0 \text{ so convex marginal util } u'$$

$$\text{Jensen} \frac{1}{1+r^f} = \mathbb{E}[\eta_\omega] = \mathbb{E}\left[\frac{\delta u'(c_{1\omega})}{u'(c_0)}\right] \geq \frac{\delta u'(c_{1\omega})}{u'(c_0)} = \frac{\delta u'(\bar{c}_1 + \varepsilon_\omega)}{u'(\bar{c}_1)}$$

Precautionary Savings Effect: Possibility of high marg util states in future makes agent want to save more.
 \implies Pushes RF bond price \nearrow and the $r^f \searrow$

Characterization of Optimal Portfolio:

Proposition (Optimization) Use Budget Constraint for c_0, c_1

$$\implies \max_{\theta} u_0(e_0 - P'\theta) + \mathbb{E}[u_1(e_1 + D\theta)]$$

$$= \max_{\theta} u_0(e_0 - P'\theta) + \sum_{\omega} p_{\omega} u_1\left(e_{1\omega} + \sum_{n=1}^N \theta_n D_{1\omega n}\right)$$

Definition (Euler Eqn) FOC: $u'_0(c_0)P_n = \mathbb{E}[u'_1(c_1)D_n]$, $n = 1..N$
At optimum: MU(t=0) consumpt loss: paid P_n to invest in 1 asset n = MU(t=1) consumpt gain: receive payoff D_n from investment in asset n

$$\text{OR: } 1 = \mathbb{E}\left[\frac{u'_1(c_1) D_n}{u'_0(c_0) P_n}\right] =: \mathbb{E}\left[\frac{u'_1(c_1)}{u'_0(c_0)} R_n\right]$$

MU(invest in traded assets)/MU(consuming today) = 1 $\forall n$

Note: FOC does not guarantee optimality: need **SOC!**

Definition (SOC) Optimality obtained if, in addition to FOC:
 $u''_0(c_0)P_n^2 + \mathbb{E}[u''_1(c_1)D_n^2] \leq 0$, $n = 1, \dots, N$

Prop: u_1, u_2 concave \implies SOC holds

Proposition (Portfolio Decomposition)

Agent's $t = 0$ savings: $w = e_0 - c_0 = P'\theta$

\implies Optimal consumpt/portf choice: $\max_{\omega} \{u_0(e_0 - w) + v_1(w)\}$
v function: $v_1(w) = \max_{\{\theta: P'\theta = w\}} \mathbb{E}[u_1(e_1 + D\theta)]$

Note: v = portf choice problem given total amount to invest = w

Example: (Special Case) $e_1 = 0$ (agent endowed only with e_0 cash)

$$\implies \text{Portf Choice Pb: } v(w) = \max_{\{\theta: P'\theta = w\}} \mathbb{E}[u_1(D\theta)]$$

Riskless asset: asset N with gross return $R_n = 1 + r^f$

$a_n = \theta_n P_n$: \$ invested in asset $n \implies w = \sum_n a_n$ **total investment**

Portf payoff: $\tilde{w} = D\theta = \sum_{n=1}^N a_n R_n = w(1 + r^f) + \sum_{n=1}^{N-1} a_n (r_n - r^f)$

Excess Return of asset n : $r_n - r^f$

Theorem (General Pb)

$r = [r_1, \dots, r_{N-1}]'$ returns on risky assets;

$a = [a_1, \dots, a_{N-1}]'$ investments in risky assets;

\implies Optimal Portfolio Pb:

$$\max_a \mathbb{E}[u(\tilde{w})] = \max_a \mathbb{E}\left[u\left(w(1+r^f) + (r - r^f)a\right)\right]$$

$$\implies \text{FOC: } \mathbb{E}[u'(\tilde{w})(r_n - r^f)] = 0 \quad \forall n = 1..N-1$$

\implies Solution = $a(w) \in \mathbb{R}^{N-1}$

Note: FOC: marg cost of investing in n

$$= \mathbb{E}[u'(\tilde{w})r_n] = \mathbb{E}[u'(\tilde{w})r^f] = \text{marg cost of losing } r^f$$

Properties of Optimal Portfolio:

Case 1: Assume only **ONE** risky asset:

Prop: $\tilde{w} = (1+r^f) + a(r - r^f)$

(\cdot) borrow at RF rate, invest in risky asset

Proposition (Opt Investment a) Agent = strictly RA

$a > 0 \iff \bar{r} > r^f$; $a < 0 \iff \bar{r} < r^f$

$a = 0 \iff \bar{r} = r^f$

$$(\cdot) \bar{u}(a) = \mathbb{E}[u(\tilde{w})] = \mathbb{E}\left[u(w(1+r^f) + a(r - r^f))\right]$$

$$\bar{u}''(a) = \mathbb{E}\left[u''(\tilde{w})(r - r^f)^2\right] \leq 0 \text{ as } u \text{ concave}$$

\implies at max: $0 = \bar{u}'(a) = \mathbb{E}[u'(\tilde{w})(r - r^f)]$

$$\bar{u}'(0) = u(w(1+r^f)) \cdot (\bar{r} - r^f) \rightarrow \text{sign}(r - r^f)$$

$a < 0 \iff \bar{u}'(0) < 0 \iff r < r^f$

Prop: risk-premium $> 0 \implies$ agent invest at least ε in risky asset

$$(\cdot) \text{ Change } a = 0 \text{ to } a = \varepsilon \text{ small: } \frac{d\mathbb{E}[\tilde{w}]}{da} = \bar{r} - r^f \text{ indep of } a$$

$$\frac{d\mathbb{E}[\tilde{w}]}{da} = \frac{d}{da}(a^2 \text{Var}(r)) = 2a \text{Var}(r) \nearrow \text{with } a$$

Proposition (Abs RA) Assume $\bar{r} - r^f > 0$ (so $a > 0$)

$a'(w) > 0 \iff A'(w) < 0$ (DARA) ; $a'(w) = 0 \iff A'(w) = 0$ (CARA)

$a'(w) < 0 \iff A'(w) > 0$ (IARA \implies very rare)

(\cdot) Consider DARA: $A'(w) < 0$. FOC: $\mathbb{E}[u'(\tilde{w})(r - r^f)] = 0$

$$\implies \frac{d}{dw} \text{ and algebra: use } u'' < 0, a > 0, A(\tilde{w}) = -\frac{u''(\tilde{w})}{u'(\tilde{w})}$$

Prop: You see from FOC diff: $\frac{da}{dw} = -(1+r^f) \frac{\mathbb{E}[u''(\tilde{w})(r - r^f)]}{\mathbb{E}[u''(\tilde{w})(r - r^f)^2]}$

Definition (Relative Propensity) for investor in risky asset:

$$e(w) = \frac{w}{a} \frac{da}{dw}$$

Note: $e(w) = 1 \iff a(w) = \bar{a} \cdot w$: risky invest^M = CST fract^o of wealth

Proposition (Rel RA) Assume $\bar{r} - r^f > 0$ (so $a > 0$)

$e(w) > 1 \iff R'(w) < 0$ (DRRA) ; $e(w) = 1 \iff R'(w) = 0$ (CRRA)

$e(w) < 1 \iff R'(w) > 0$ (IRRA \implies very rare)

$$(\cdot) \text{ FOC diff } \implies e(w) = \frac{w}{a} \frac{da}{dw} = -\frac{(1+r^f)}{a} \frac{\mathbb{E}[u''(\tilde{w})(r - r^f)]}{\mathbb{E}[u''(\tilde{w})(r - r^f)^2]}$$

$$\implies e(w) - 1 = -\frac{1}{a} \frac{\mathbb{E}[u''(\tilde{w})(r - r^f)]}{\mathbb{E}[u''(\tilde{w})(r - r^f)^2]} = -\frac{1}{a} \frac{\mathbb{E}[R(\tilde{w}) - u'(\tilde{w})(r - r^f)]}{\mathbb{E}[u''(\tilde{w})(r - r^f)^2]}$$

Case 2: Assume **MULTIPLE** risky assets:

Prop: $\tilde{w} = w(1+r^f) + (r - r^f) \iota'$

Theorem (Opt Investment a) $a = 0 \iff \mathbb{E}[r_n] = r^f \quad \forall n = 1..N-1$

(\cdot) \Rightarrow Use FOC

\Leftarrow risk prem = 0 for all risky assets

$\implies \mathbb{E}[\tilde{w}] = w(1+r^f) \rightarrow$ payoff from $a=0$ portf

Jensen: $\mathbb{E}[u(\tilde{w})] \leq u(\mathbb{E}[\tilde{w}]) = u(w(1+r^f))$ for all $a \implies a = 0$ opt

Theorem (Opt Investment a II) Some risk-prem on risky assets $\neq 0$

$$\implies \mathbb{E}[r_{\text{portf}}] > r^f \text{ (i.e., } \sum_{n=1}^{N-1} a_n(\mathbb{E}[r_n] - r^f) \geq 0)$$

(\cdot) Jensen: $u(\mathbb{E}[\tilde{w}]) \geq \mathbb{E}[u(\tilde{w})] \geq u(w(1+r^f)) \implies \mathbb{E}[\tilde{w}] \geq w(1+r^f)$

$$\implies \sum_{n=1}^{N-1} a_n(\mathbb{E}[r_n] - r^f) \geq 0$$

Stochastic Dominance

Idea: 2 key elements to rank portfs: $\mathbb{E}[\text{return}]$ & risk \rightarrow tradeoff!

Use: partial order (returns props let agnts rank 2 portfs, indep of prefs)

Let r_A, r_B = returns of assets A & B

First Order Stochastic Dominance: (dominance in return distrib)

Definition (FSD) A dominates B in the FSD sense:

$$A \gtrsim_{\text{FSD}} B \iff \forall u' \geq 0 : \mathbb{E}[u(r_A)] \geq \mathbb{E}[u(r_B)]$$

Note: $u(r) = u(w(1+r^f))$

Prop: $A \gtrsim_{\text{FSD}} B \implies \bar{r}_A \geq \bar{r}_B$ but converse FALSE!

Theorem (Ordering) $A \gtrsim_{\text{FSD}} B \implies$ for $u' > 0, u'' < 0$

$$\max_a \mathbb{E}[u(w(1+r^f) + a(r_A - r^f))] \geq \max_a \mathbb{E}[u(w(1+r^f) + a(r_B - r^f))]$$

(\cdot) Let $f(a, r_i) := \mathbb{E}[u(w(1+r^f) + a(r_i - r^f))]$ and

$$a_B = \arg\max_a f(a, r_B): \max_a f(a, r_A) \geq f(a_B, r_A) \geq \max_a f(a, r_B)$$

Second Order Stochastic Dominance: (dominance in risk)

Definition (SSD) A dominates B in the SSD sense:

$$A \gtrsim_{\text{SSD}} B \iff \forall u'' \leq 0 : \mathbb{E}[u(r_A)] \geq \mathbb{E}[u(r_B)]$$

Prop: ONLY WORKS IF $\bar{r}_A = \bar{r}_B$!

Prop: $A \gtrsim_{\text{SSD}} B \implies \text{Var}(r_A) \leq \text{Var}(r_B)$ but converse FALSE!

Theorem (Rothschild-Stiglitz) $A \gtrsim_{\text{SSD}} B$

$$\iff \mathbb{E}[r_A] = \mathbb{E}[r_B] \text{ and } \int_0^y [F_A(x) - F_B(x)] dx =: S(y) \leq 0 \quad \forall y$$

$$\iff R_A \stackrel{d}{\sim} R_B + \varepsilon, \text{ with } \mathbb{E}[\varepsilon | R_B] = 0$$

Prop: $R_A \sim N(\mu, \sigma_A^2)$, $R_B \sim N(\mu, \sigma_B^2)$: $\sigma_A < \sigma_B \implies A \gtrsim_{\text{SSD}} B$

$$(\cdot) R_B \stackrel{d}{\sim} R_A + \varepsilon \Rightarrow \varepsilon \sim N(0, \sigma_B^2 - \sigma_A^2) \perp B \Rightarrow \mathbb{E}[\varepsilon | R_A] = 0$$

Note: $\text{Var}(R_A) \leq \text{Var}(R_B) \not\implies A \gtrsim_{\text{SSD}} B$: try utility that has small \mathbb{P} of black swan

Mutual-Fund Separation Thms

Idea: Characterize Opt Portfs: Explore restrictions on

(1) Return Distributions (2) Agent's Utility Function (3) Both Assumptions (Setup)

$x_n = \frac{a_n}{w}$: weight of portf a in asset n ($n = 1..N$)

$x = [x_1, \dots, x_N]'$ in \mathbb{R}^N with $\iota' x = 1$

Note: x defines a portf with gross return $R_x = Rx$

Proposition (Optimal Portf Pb) $v =$ util funct^o over returns

$$\max_{\{x: \iota' x=1\}} \mathbb{E}[u(\tilde{w})] = \max_{\{x: \iota' x=1\}} \mathbb{E}[u(wRx)] = \max_{\{x: \iota' x=1\}} \mathbb{E}[v(Rx)]$$

Definition (F-Fund Separation) The set of optimal portfs of

different agents lie in a $F - 1 \leq N - 1$ dimens affine subspace of \mathbb{R}^N

X_F = the $F - 1$ dimensional subspace

$x_k \in \mathbb{R}^N$ = agent k 's opt portf ($k = 1..K$)

$x_{F+1} \in \mathbb{R}^N$ = indep portfs/funds in X_F ($i = 1..F$)

F funds are called the **separating funds** or **mutual funds**

Prop: F -Fund separation $\Rightarrow x_k = \sum_{i=1}^F h_{ki} x_{F+i}$ with $\sum_{i=1}^F h_{ki} = 1$

Every agent's opt portf = lin comb of the F funds

Note: If \exists a RF asset: it's often in F funds \Rightarrow **Monetary Separat^o**

\Rightarrow Remaining $F - 1$ funds consist of only risky assets

Theorem (Ross - 2 Fund Sep)

Suppose: \exists RF asset w / gross return R^f (call it asset N).

2 Funds Separation holds for any insatiable & concave util funct^o
 \Leftrightarrow returns on risky assets satisfy: $\exists F, \beta_n, x_n, n = 1..N - 1$ s.t.

$$(1) R_n = R^f + \beta_n F + \varepsilon_n$$

$$(2) \mathbb{E}[x_n | F] = 0$$

$$(3) \sum_{n=1}^{N-1} x_n \varepsilon_n = 0 \text{ where } \sum_{n=1}^{N-1} x_n = 1$$

Note: RF security = a separating fund

Note: Returns of risky assets have a 1-factor structure

Note: \exists a portf of only risky assets (w / x_n = weight in risky asset $n \in \{1..N - 1\}$) s.t. idiosyncratic risks are fully eliminated

portf with only factor risk \gtrsim_{SSD} portf w / factor + idiosyncr risk

Theorem (Preferences & Mutual-Fund Separation)

Assume: arbitrary return distrib & $u' > 0, u'' < 0$

1-Fund Sep holds \Leftrightarrow all agents have the same util funct^o over returns (up to affine transfos)

Note: 1-Fund Sep is STRONG: need \sim identical prefs!

Example: (Homothetic CRRA) $u(wRx) = w^{1-\gamma} \cdot u(Rx)$

$$\Rightarrow \text{argmax}_x \mathbb{E}[u(wRx)] = \text{argmax}_x \mathbb{E}[u(Rx)]$$

Note: opt portf x indep of wealth level: can allow for heterogen in w

$$(\cdot) \Rightarrow \text{argmax}_x \mathbb{E}[u(wRx)] = \text{argmax}_x w^{1-\gamma} \mathbb{E}[u(Rx)]$$

Theorem (Cass-Stiglitz) 2-Fund monetary sep holds

$$\Leftrightarrow u'_k(w) = (d_k + \frac{w}{\gamma})^{-\gamma} > 0 \text{ for every agent } k$$

with $d_k \geq 0$ and $\gamma \geq -1$ same for all agents

Mean-Variance Portfolio Theory

Idea: To characterize optimal portfolios, impose restriction on: Preferences (U) and/or Returns distribution

Here: focus on case where preferences over portfolio return is a function of mean + variance (i.e., suff stats for returns distrib)

Mean-Variance Preference:

Definition (Portfolio Choice Pb) $\max_{a: \iota' a=1} \mathbb{E}[u(\tilde{w})]$

where: a = portf weights, \tilde{w} = total wealth

Prop: $\mathbb{E}[u(\tilde{w})] = \sum_n \frac{1}{n!} u^{(n)}(\mathbb{E}[\tilde{w}]) \cdot \mathbb{E}[(\tilde{w} - \mathbb{E}[\tilde{w}])^n]$

Idea: Focus on E.U. that depends on $\mathbb{E}[\tilde{w}]$ & $\text{Var}(\tilde{w})$

Definition (Mean-Variance Preferences)

$$\mathbb{E}[u(\tilde{w})] = v(\mathbb{E}[\tilde{w}], \text{Var}(\tilde{w})) = v(\tilde{w}, \sigma_w^2)$$

Definition (Quadratic Utility) $u(w) = w - \frac{1}{2}aw^2, a > 0, w < 1/a$

Prop: $u(\cdot)$ quadratic $\Rightarrow \mathbb{E}[u(\tilde{w})] = v(\tilde{w}, \sigma_w^2)$

$$(\cdot) \mathbb{E}[u(\tilde{w})] = \mathbb{E}[\tilde{w} - \frac{1}{2}a\tilde{w}^2] = \tilde{w} - \frac{1}{2}a\tilde{w}^2 - \frac{1}{2}a\sigma_w^2$$

Prop: $v \nearrow \tilde{w}, \searrow \sigma_w$ and is concave in \tilde{w} & σ_w

$$(\cdot) \frac{\partial v}{\partial \tilde{w}} = 1 - a\tilde{w} > 0, \frac{\partial v}{\partial \sigma_w} = -a\sigma_w < 0,$$

$$\text{and } \frac{\partial^2 v}{\partial \tilde{w}^2} = \frac{\partial^2 v}{\partial \sigma_w^2} = -a < 0, \frac{\partial^2 v}{\partial \tilde{w} \partial \sigma_w} = 0$$

Proposition (Jointly Normal Returns) D jointly normal

$$\Rightarrow \tilde{w} = D\theta \sim N(\tilde{w}, \sigma_w)$$

\Rightarrow mean-variance preferences: $\mathbb{E}[u(\tilde{w})] = v(\tilde{w}, \sigma_w^2)$

$$(\cdot) \tilde{w} = \tilde{w} + \sigma_w \varepsilon, \text{ where } \varepsilon \sim N(0, 1)$$

Prop: $v(\tilde{w}, \sigma_w) = \mathbb{E}[u(\tilde{w})], u' > 0, u'' < 0: v \nearrow \tilde{w}, \searrow \sigma_w + \text{concave}$

$$(\cdot) \frac{\partial v}{\partial \tilde{w}} = \mathbb{E}[u'(\tilde{w} + \sigma_w \varepsilon)] > 0,$$

$$\frac{\partial v}{\partial \sigma_w} = \mathbb{E}[u'(\tilde{w} + \sigma_w \varepsilon)] < \mathbb{E}[u'(\tilde{w})] = 0,$$

$$\text{and } \frac{\partial^2 v}{\partial \tilde{w}^2} = \mathbb{E}[u''(\tilde{w} + \sigma_w \varepsilon)] < 0, \frac{\partial^2 v}{\partial \sigma_w^2} = \mathbb{E}[u'(\tilde{w} + \sigma_w \varepsilon)^2] < 0$$

Proposition (2nd Order Approx)

Risk Premium $\pi: \mathbb{E}[u(\tilde{w})] = \mathbb{E}[u(\tilde{w} + \varepsilon)] = u(\tilde{w} - \pi)$ with $\varepsilon = \tilde{w} - \tilde{w}$

$$\text{Small risk } \Rightarrow \pi(\tilde{w}, \sigma_w) \approx \frac{1}{2} \left[\frac{u''(\tilde{w})}{u'(\tilde{w})} \right] \sigma_w^2$$

\Rightarrow For small gambles: mean-variance prefs approximate any $u(\tilde{w})$

Mean-Variance Frontier Portfolios:

Idea: (2-Step Approach)

(1) Minimize $\text{Var}(\tilde{w})$ as a function of the a target $\mathbb{E}[\text{portf return}] \bar{r}_p$

\Rightarrow Find set of **mean-variance frontier portfs**

(2) Pick portf \tilde{r}_p that maximizes $u(\tilde{w})$

Assumptions (Setup) $r = [r_1, \dots, r_N]'$ in \mathbb{R}^N **asset returns** with:

mean $\tilde{r} = \mathbb{E}[r]$ & **covariance matrix** $\Sigma = \mathbb{E}[(r - \tilde{r})(r - \tilde{r})'] \in \mathbb{R}^{N \times N}$

$x = [x_1, \dots, x_N] \in \mathbb{R}^N$ **portf weights**: $r_x = r'x, \tilde{r}_x = \tilde{r}'x, \sigma_x^2 = x' \Sigma x$

Terminal Wealth: $\tilde{w} = w(1 + r_x), \mathbb{E}[\tilde{w}] = w(1 + \tilde{r}_x), \text{Var}(\tilde{w}) = w^2 \sigma_x^2$

Agents prefer portfs w/ higher $\mathbb{E}[r_x]$ & lower σ_x^2 .

Definition (Mean-Variance Frontier Portf - MVF) $\min_{x} \frac{1}{2} x' \Sigma x$

$$\text{s.t. } \tilde{r}'x = \bar{r}_p \text{ & } \iota'x = 1$$

Proposition (Trick) $\frac{\partial}{\partial x} x' \Sigma x = \frac{\partial}{\partial x} \tilde{r}' \Sigma x = x'(\Sigma + \Sigma') = 2x' \Sigma$

Assumptions (Additional) Only risky assets + No redundancy

$$\Rightarrow \Sigma \text{ full rank & } \exists \Sigma^{-1}$$

Theorem (MVF Solution) $\mathcal{L} = \frac{1}{2} x' \Sigma x + \lambda_1(\bar{r}_p - \tilde{r}'x) + \lambda_2(1 - \iota'x)$

FOC: $x' \Sigma = \lambda_1 \tilde{r}' + \lambda_2 \iota'$ with $\tilde{r}'x = \bar{r}_p$ & $\iota'x = 1$

$$\Rightarrow x = \lambda_1 \Sigma^{-1} \tilde{r} + \lambda_2 \Sigma^{-1} \iota' \text{ (plug-in constraints to get } \lambda \text{'s)}$$

Define: $x_1 := \frac{1}{\iota' \Sigma^{-1} \iota} \Sigma^{-1} \iota$ & $x_2 := \frac{1}{\iota' \Sigma^{-1} \tilde{r}} \Sigma^{-1} \tilde{r}$ **Prop:** $\iota' x_{1,2} = 1$

\Rightarrow 2 frontier portfs with $\mathbb{E}[\text{return}] \tilde{r}_1 = \frac{\tilde{r}' \Sigma^{-1} \iota}{\iota' \Sigma^{-1} \iota}$ & $\tilde{r}_2 = \frac{\tilde{r}' \Sigma^{-1} \tilde{r}}{\iota' \Sigma^{-1} \tilde{r}}$

$$\Rightarrow x = \lambda x_2 + (1 - \lambda) x_1$$

$$\Rightarrow \tilde{r}_p = \lambda \tilde{r}_2 + (1 - \lambda) \tilde{r}_1 \text{ with } \lambda = \frac{\bar{r}_p - \tilde{r}_1}{\tilde{r}_2 - \tilde{r}_1}$$

Vary \tilde{r}_p to draw the Mean-Variance Frontier \Rightarrow only boundary!

Corollary (2-Funds Separation)

- Any MVF generated by mixing 2 MVF portfs: x_1 & x_2
- MVF generated by mixing any 2 MVF portfs
- Portfs of MVFs is an MVF Portf
- The set of MVF Portfs = **line** in \mathbb{R}^N

(\cdot) Set of portfs: $X = \{x \in \mathbb{R}^N : \iota'x = 1\} \in \mathbb{R}^{N-1}$

Set of MVF portfs: $X_{MVF} \subseteq X$ and $x_1, x_2 \in X_{MVF} \Rightarrow$ line in \mathbb{R}^N

MVF Portfolio Properties:

Definition (Minimum Variance Portfolio - MVF) $\frac{\partial \sigma_p^2}{\partial \tilde{r}_p} = 0$

Prop: Necessary & suff: $x'_{MVF} \Sigma (x_2 - x_1) = 0$

$$(\cdot) 0 = \frac{\partial \sigma_p^2}{\partial \tilde{r}_p} = \frac{\partial \sigma_p^2}{\partial \tilde{r}} \cdot \frac{\partial \tilde{r}}{\partial \tilde{r}_p} = 2x' \Sigma (x_2 - x_1) \cdot \frac{1}{\tilde{r}_2 - \tilde{r}_1}$$

Prop: $x_{MVF} = x_1$ (\cdot) $x_1' \Sigma (x_2 - x_1) = \frac{1}{\iota' \Sigma^{-1} \iota} \iota' (x_2 - x_1) = 0$

Prop: MVF = Hyperbola in $\tilde{r} - \sigma$ plane

(\cdot) $x_p = x_1 + \lambda(x_2 - x_1)$, and $\sigma_p = \sqrt{\sigma_1^2 + \lambda^2 \text{Var}(r_2 - r_1)}$ so:

$$\tilde{r}_p = \tilde{r}_1 + \lambda(\tilde{r}_2 - \tilde{r}_1) = \tilde{r}_1 \pm \frac{\sigma_2^2 - \sigma_1^2}{\text{Var}(r_2 - r_1)} (\tilde{r}_2 - \tilde{r}_1)$$

Theorem \forall Portf p : $\text{Cov}(r_p, r_{MVF}) = \sigma_{MVF}^2$

(\cdot) New Portf α : $r_\alpha := \alpha r_p + (1 - \alpha) r_{MVF}$ so by MVF def:

$$0 = \text{argmin}_\alpha \text{Var}(r_\alpha) \Rightarrow \frac{\partial}{\partial \alpha} \text{Var}(r_\alpha) = 0 \text{ at } \alpha = 0$$

$$0 = \frac{\partial}{\partial \alpha} |_{\alpha=0} [(1 - \alpha)^2 \sigma_{MVF}^2 + \alpha^2 \text{Var}(r_p) + 2\alpha(1 - \alpha) \text{Cov}(r_p, r_{MVF})]$$

$$\Rightarrow 0 = -\sigma_{MVF}^2 + \text{Cov}(r_p, r_{MVF})$$

Note: Can also say that o'wise, we would get $\sigma_\alpha < \sigma_{MVF}$:

$$\text{Var}(r_\alpha) = \sigma_{MVF}^2 + 2\alpha \text{Cov}(r_p - r_{MVF}, r_{MVF}) + \alpha^2 \text{Var}(r_p - r_{MVF})$$

$$\approx \sigma_{MVF}^2 + 2\alpha \text{Cov}(r_p - r_{MVF}, r_{MVF}) \text{ so if } \text{Cov} \gtrless 0: \text{take } \alpha \leq 0 \downarrow \sigma_\alpha$$

Prop: MVF always dominated by other MVF portfs (unless \tilde{U} is vertical $\rightarrow \infty$ Risk Aversion)

Definition (Zero-Covariance Portf - ZCP) Given MVF portf p : Portf ZCP s.t. $\text{Cov}(r_{ZCP}, r_p) = 0$ for that $p \neq MVF$

Theorem (ZCP \exists) If MVF $p \neq MVF$, \exists ZCP: $\text{Cov}(r_{ZCP}, r_p) = 0$

Note: $r_{ZCP} := r_p + \alpha(r_{MVF} - r_p)$ with $\alpha = -\frac{\sigma_p^2}{\sigma_{MVF}^2 - \sigma_p^2}$

$$(\cdot) \text{Cov}(r_p, r_{ZCP}) = \sigma_p^2 + \alpha \text{Cov}(r_p, r_{MVF} - r_p) = \sigma_p^2 + \alpha(\sigma_{MVF}^2 - \sigma_p^2)$$

Theorem (Towards Zero-Beta CAPM) Given MVP p w/ its ZCP:

$$\forall \text{ portf } q: \tilde{r}_q - \tilde{r}_{ZCP} = \beta_{qp}(\tilde{r}_p - \tilde{r}_{ZCP}), \text{ where } \beta_{qp} = \frac{\text{Cov}(r_q, r_p)}{\sigma_p^2}$$

(\cdot) For \exists RF asset: it's often in F funds \Rightarrow **Monetary Separat^o**

$$r_q = r_{q*} + r_u \text{ with } \mathbb{E}[r_u] = 0, \text{Cov}(r_u, r_p) = \text{Cov}(r_u, r_{MVF}) = 0$$

$\Rightarrow \exists$ s.t. $r_{q*} = r_{ZCP} + \alpha(r_p - r_{ZCP})$

$$\Rightarrow \tilde{r}_q = \tilde{r}_{q*} = \tilde{r}_{ZCP} + \alpha(\tilde{r}_p - \tilde{r}_{ZCP}) \text{ (so } \beta_{qp} := \alpha \text{) and}$$

$$\text{Cov}(r_q, r_p) = \text{Cov}(r_q - r_{q*}, r_p) = \text{Cov}(r_{q*}, r_p) = \alpha \sigma_p^2$$

Theorem (Geometry of ZCP)

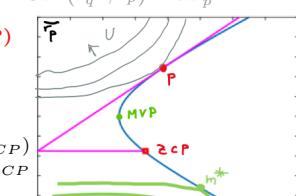
Any MVF Portf q satisfies:

$$r_q = r_p + \alpha(r_p - r_{ZCP})$$

$$\sigma_q^2 = \sigma_p^2 + 2\alpha \sigma_p^2 + \alpha^2 \text{Var}(r_p - r_{ZCP})$$

\Rightarrow Tangent at p ; Intercept = \tilde{r}_{ZCP}

$$\& \text{ Slope} = \frac{\tilde{r}_p - \tilde{r}_{ZCP}}{\sigma_p}$$



Connection with the SPD:

Assumptions NA $\Rightarrow \exists$ SPD $m > 0$ (or η)

Definition $m^* =$ projection of m on linear space of payoffs

Prop: $(m - m^*) \perp$ payoffs, so $\mathbb{E}[(m - m^*) \cdot \text{payoff}] = 0$

Prop: At $t = 0$: m^* price $P_0(m^*) = \mathbb{E}[m^* \cdot m^*] = \mathbb{E}[(m^*)^2]$

$$(\cdot) \mathbb{E}[mm^*] = \mathbb{E}[(m^* + (m - m^*))m^*] = \mathbb{E}[(m^*)^2] + \mathbb{E}[(m - m^*) \cdot m^*]$$

Prop: Return on portf m^* : $1 + r^* := \frac{m^*}{P_0(m^*)} = \frac{m^*}{\mathbb{E}[(m^*)^2]}$

Proposition (SDF Prices All Assets) $\mathbb{E}[m^* \cdot \text{payoff}] = 0$

Note: Also, $\mathbb{E}[r^* \cdot \text{payoff}] = 0$ (as $r^* \propto m^* \propto m$)

(\cdot) TBD

Proposition (Efficiency of m^*) Portf m^* is on MVF

$$(\cdot) \text{ Decompose } r^* = \frac{m^*}{\mathbb{E}[(m^*)^2]}:$$

$$r^* = r_p + r_u \text{ with } \mathbb{E}[r_u] = 0, \text{Cov}(r_u, r_p) = \text{Cov}(r_u, r_{MVF}) = 0$$

Notice: $\mathbb{E}[r_p r_u] = \text{Cov}(r_p, r_u$

Theorem (MVF Solution) $\mathcal{L} = \frac{1}{2}x'\Sigma x + \lambda(\bar{r}_p^e - x'\bar{r}^e)$

FOC: $x'\Sigma = \lambda\bar{r}^e$ with $\bar{r}_p^e = x'\bar{r}^e x \implies x_p = \frac{\bar{r}_p^e}{\bar{r}^e'\Sigma^{-1}\bar{r}^e}\Sigma^{-1}\bar{r}^e$

Vary \bar{r}_p^e to get the MVF in presence of RF asset

Note: $\bar{r}_p^e = 0 \implies x_p = 0$ so all in RF

$\bar{r}_p^e = \frac{\bar{r}^e'\Sigma^{-1}\bar{r}^e}{\bar{r}^e'\Sigma^{-1}\bar{r}^e} \implies x'x_p = 1$ so all in risky \equiv Tangency Portf

In general: total weight in risky asset $a_p := x'x_p = \frac{\bar{r}^e'\Sigma^{-1}\bar{r}^e}{\bar{r}^e'\Sigma^{-1}\bar{r}^e}$

Definition (Tangency Portf) All in risky asset:

$x_T := \frac{1}{\bar{r}^e'\Sigma^{-1}\bar{r}^e} \Sigma^{-1}\bar{r}^e$ **Prop:** For all $p \in \text{MVF}$: $a_p = \frac{\bar{r}_p^e}{\bar{r}^e}$, $x_p = a_p x_T$

Also we get a line: $r_p = r^f + w(r_T - r^f)$

Any MVF portf = mix of Tangent portf & RF asset

Definition (Sharpe Ratio) Given Portf x : $SR := \frac{x'\bar{r}^e}{\sqrt{x'\Sigma x}}$

Prop: Among all portfs of risky assets only: Tangent portf has max SR

(\cdot) FOC to max SR: $x = \frac{\sqrt{x'\Sigma x}}{SR} \Sigma^{-1}\bar{r}^e \implies x'x = 1 \implies x = \text{Tngt}$

Theorem Let $p \in \text{MVF}$, then for all portf q :

$\bar{r}_q - r^f = \beta_{qp}(\bar{r}_p - r^f)$, $\beta_{qp} := \frac{\text{Cov}(r_p, r_q)}{\sigma_p^2}$

(\cdot) $x_p = \frac{\bar{r}_p^e}{\bar{r}^e'\Sigma^{-1}\bar{r}^e} \Sigma^{-1}\bar{r}^e$

$\implies \text{Cov}(r_p, r_q) = \frac{\bar{r}_p^e}{\bar{r}^e'\Sigma^{-1}\bar{r}^e} \bar{r}^e'\Sigma^{-1}\bar{r}^e \bar{r}_q = \frac{\bar{r}_p^e}{\bar{r}^e'\Sigma^{-1}\bar{r}^e} \bar{r}_q$

If $p = q$: $\sigma_p^2 = \frac{(\bar{r}_p^e)^2}{\bar{r}^e'\Sigma^{-1}\bar{r}^e} \implies \text{Cov}(r_p, r_q) = \frac{\bar{r}_p^e}{\bar{r}^e}\sigma_p^2 = \beta_{pp}$

Long shot:

$$\begin{aligned} r_n &= r_q - r_f \\ \text{particular} &= \bar{r}_p + \alpha c_0 \Rightarrow \bar{r}_n = \bar{r}_p + \alpha(\bar{r}_q - \bar{r}_p) \\ &\quad \left| \begin{array}{l} \text{particular} \\ \text{particular} \end{array} \right. \quad \left| \begin{array}{l} \text{as small} \\ \text{as small} \end{array} \right. \\ \frac{d\bar{r}_n}{d\alpha} &= \frac{1}{2} \frac{2\text{Cov}(\bar{r}_q - \bar{r}_p, \bar{r}_p)}{\sigma_p^2} = \frac{\text{Cov}(\bar{r}_q - \bar{r}_p, \bar{r}_p)}{\sigma_p^2} \quad \text{by optimality: I cannot move} \\ &\quad \text{outside of the line (up/down)} \\ \Rightarrow & \frac{\bar{r}_q - r_f}{\text{Cov}(\bar{r}_q - \bar{r}_p, \bar{r}_p)} \cdot \sigma_p^2 = SR = \frac{\bar{r}_p - r_f}{\sigma_p^2} \quad \Rightarrow \beta_p = \frac{\text{Cov}(\bar{r}_q - \bar{r}_p, \bar{r}_p)}{\sigma_p^2} \end{aligned}$$

Note:

• Under mean variance prefs: 2-fund separation holds.

• The optimal portfolios of all agents have a very simple structure.

Portfolio efficiency: basic intuition

• Recall the first order condition for the tangency portfolio:

$$0 = x^\top \Sigma - \lambda \pi$$

• Rearranging, this implies that

$$\pi_j = \bar{r}_j - r_F = \frac{1}{\lambda} \mathbb{C}(r_j, r_p) = \frac{1}{\lambda} \frac{\partial(1/2x^\top \Sigma x)}{\partial x_j}$$

• LHS is the marginal benefit (increase in expected return) associated with borrowing at r_F to increase the weight in asset j

• RHS is the corresponding marginal cost (increase in variance). λ is the shadow cost (in terms of variance) of a marginal increase in expected returns.

• An efficient portfolio will equate the two across all risky assets.

• If an asset earns a high risk premium, it must be the case that a marginal increase in its weight would generate a larger increase in portfolio variance (i.e., it has a higher covariance with the tangency portfolio) relative to another asset with a lower risk premium.

In Practice

Consumption Choice Problem 1:

Setup: $M=2$ states, $N=2$ assets (1 RF + 1 risky)

$t=1$ returns: $R = \begin{bmatrix} 1 & u \\ 1 & d \end{bmatrix}$, probs: π_u, π_d .

Agent: initial wealth w_0 , final $w_1 = 0$.

Portf Weights (RF/Risky asset): $\alpha = [\alpha_1, \alpha_2]'$

Max Prob: $\max_{c_0, c_1, \alpha} \log c_0 + \beta \mathbb{E}[\log c_1]$

2 Budget Constraints: $c_1 = (w_0 - c_0)R\alpha$

(a) **Find optimal $\alpha = \alpha(w_0, c_0, c_1)$:**

Complete Market: $\mathbb{E}R^{-1} \implies \alpha = \frac{1}{w_0 - c_0} R^{-1} \cdot c_1$

(b) **Rewrite Constraints Using Only (w_0, c_0, c_1) :**

$\phi = P'R^{-1}$ with $P = [1, 1]'$ so $\eta_u = \frac{\phi_u}{\pi_u}$, $\eta_d = \frac{\phi_d}{\pi_d}$

\implies Constraint: $w_0 := c_0 + \mathbb{E}[\eta c_1] = c_0 + \pi_u \eta_u c_{1,u} + \pi_d \eta_d c_{1,d}$

(c) **Optimize over (c_0, c_1) + Find $c_0(\lambda), c_1(\lambda)$:**

$\max c_0 + \beta \mathbb{E}[\log c_1]$ s.t. $w_0 = c_0 + \pi_u \eta_u c_{1,u} + \pi_d \eta_d c_{1,d}$

c_0, c_1

$\mathcal{L} = \log c_0 + \beta \mathbb{E}[\log c_1] - \lambda(c_0 + \pi_u \eta_u c_{1,u} + \pi_d \eta_d c_{1,d} - w_0)$

$\stackrel{c_0}{\implies} \lambda = 1/c_0$

$\stackrel{c_1}{\implies} \lambda \pi_s \eta_s = \beta \pi_s/c_{1,s}$ with $s = u, d$

$\implies c_0 = \frac{1}{\lambda} \quad c_{1,u} = \frac{\beta}{\eta_u} = \frac{c_0 \beta}{\eta_u} \quad c_{1,d} = \frac{\beta}{\eta_d} = \frac{c_0 \beta}{\eta_d}$

(d) **Plug λ in constraint + Get $\lambda = \lambda(w_0)$:**

$w_0 = c_0 + \pi_u \eta_u c_{1,u} + \pi_d \eta_d c_{1,d} = \frac{1}{\lambda} + \frac{\pi_u \beta}{\lambda} + \frac{\pi_d \beta}{\lambda}$

$\implies \lambda = \frac{1+\beta}{w_0}$

(e) **Get $c_0(w_0)$, $c_1(w_0)$:**

$c_0 = \frac{w_0}{1+\beta} \quad c_{1,u} = \frac{\beta}{1+\beta} \frac{w_0}{\eta_u} \quad c_{1,d} = \frac{\beta}{1+\beta} \frac{w_0}{\eta_d}$

Consumption Choice Problem 2:

Setup: 1 RF (return r^f) + 1 Risky asset:

$$r = \bar{r} + \sigma \varepsilon \quad \varepsilon \sim N(0, 1) \quad (\bar{r} > r^f)$$

Agent: $e_0 > 0$ and $e_1 = h\varepsilon$ ($h > 0$)

Maximize: $\max_{c_0, c_1} -e^{-\alpha c_0} - \rho \mathbb{E}[e^{-\alpha c_1}]$, $\alpha > 0$ cst

(a) **Invest a in risky asset:**

Write $t = 1$ consumption $c_1 = c_1(e_0, e_1, c_0, a, r^f, r)$

$$c_1 = e_1 + w(1+r^f) + a(r-r^f) = e_1 + (e_0 - c_0)(1+r^f) + a(r-r^f)$$

(b) **Write optimal portf choice problem:**

$$\max_{c_0, a} -e^{-\alpha c_0} - \rho \mathbb{E}[e^{-\alpha(e_1 + (e_0 - c_0)(1+r^f) + a(r-r^f))}]$$

(c) **Write FOC:** $\frac{d}{da}$ and $\frac{d}{dc_0}$

(d) **Solve FOC for Opt Portf Choice problem:** Get a, c_0

(e) **How does h influences c_0 and a ?**

$c_0 \searrow$ in h . Higher uncertainty about $e_1 \implies$ lower certainty equivalent of this payoff. When h is high: agent feels poorer \Rightarrow wants to consume less.

$a \searrow$ in h . Higher uncertainty about $e_1 \implies$ less willingness to invest in the risky asset (adds risk to c_1).

Consumption Choice Problem 3:

Setup: 1 RF (asset 0) + N risky assets: $n = 1, \dots, N$

Returns: $R_0 = R^f = 1$ and $D_n = \bar{D} + \varepsilon_n$ ($n = 1..N$), $\varepsilon_n \sim N(0, \sigma)$

Prices: $P_0 = 1$, $P_n = P$ for all n

Agent: CARA $u(w) = -e^{-aw}$, $a > 0$

Endowment: 1 share of each asset n , 0 shares of RF.

Portfolio holdings of risky assets: $\theta = [\theta_1, \dots, \theta_N]'$ $\in \mathbb{R}^N$

(a) **Write agent's wealth \tilde{w} at $t = 1$:**

$$\tilde{w} = \sum_{n=1}^N \underbrace{\theta_n D_n}_{\substack{\text{Asset } n \\ \text{Payoff}}} + \frac{1}{P_0} \left(\sum_{n=1}^N \underbrace{P_n}_{\substack{\text{t=0 wealth} \\ \text{(endowment)}}} - \sum_{n=1}^N \underbrace{\theta_n P_n}_{\substack{\text{wealth invested} \\ \text{in risky assets}}} \right)$$

(b) **Write Optimal Portf Choice Pb:**

$$\max_{\theta} \mathbb{E}[-e^{-a\tilde{w}}] \text{ s.t. } \tilde{w} = \sum_{n=1}^N \theta_n D_n + \sum_{n=1}^N (1 - \theta_n) P_n$$

$D_n \stackrel{\text{iid}}{\sim} N(\bar{D}, \sigma^2)$

$$\implies \tilde{w} \sim N \left(\sum_{n=1}^N \theta_n \bar{D}_n + \sum_{n=1}^N (1 - \theta_n) P_n, \sigma^2 \sum_{n=1}^N \theta_n^2 \right)$$

$$\Rightarrow -a\tilde{w} \sim N \left(-a \sum_{n=1}^N \theta_n \bar{D}_n - a \sum_{n=1}^N (1 - \theta_n) P_n, a^2 \sigma^2 \sum_{n=1}^N \theta_n^2 \right)$$

$$\mathbb{E}[-e^{-a\tilde{w}}] = -\exp \left(-a \sum_{n=1}^N \theta_n \bar{D}_n - a \sum_{n=1}^N (1 - \theta_n) P_n + \frac{a^2}{2} \sigma^2 \sum_{n=1}^N \theta_n^2 \right)$$

$$\implies \max_{\theta} \sum_{n=1}^N \theta_n \bar{D}_n + \sum_{n=1}^N (1 - \theta_n) P_n - \frac{a^2}{2} \sigma^2 \sum_{n=1}^N \theta_n^2$$

(c) **Solve Optimal Portf Pb:** FOC w.r.t. θ_n

$$\bar{D} - P_n - a\sigma^2 \theta_n = 0 \implies \theta_n = \frac{\bar{D} - P_n}{a\sigma^2}$$

(d) **Show: for different values of RA a, 2-Fund Separation Holds:**

Initial Wealth of Agents: $w_0 = \sum_{n=1}^N P_n$

\implies agents invest optimally fractions

$$\frac{\theta_n P_n}{w_0} = \frac{1}{a} \frac{(\bar{D} - P_n) P_n}{w_0 \sigma^2}$$

and $1 - \frac{1}{a} \frac{(\bar{D} - P_n) P_n}{w_0 \sigma^2}$ in RF asset

\implies agents hold lin comb of RF asset

and risky portf $x_M = [x_1, \dots, x_N]'$ ($x_n = \frac{(\bar{D} - P_n) P_n}{w_0 \sigma^2}$)

Depending on RA: Hold $\frac{1}{a} X_M$ in risky & $1 - \frac{1}{a} X_M'$ in RF

(e) **If agent = only agent in market**

Find Equilibrium Risky Prices P_n

Market Clearing: $1 = \theta_n = \frac{\bar{D} - P_n}{a\sigma^2} \implies P_n = \bar{D} - a\sigma^2$

(f) **Find Risk Premium on Risky Assets + N $\rightarrow \infty$ Limit:**

$$\pi_n = \bar{R}_n - R^f = \mathbb{E}[R_n] - 1 = \frac{\mathbb{E}[D_n]}{P_n} - 1 = \frac{a\sigma^2}{\bar{D} - a\sigma^2} \text{ indep of } N$$

(g) **Does APT Hold in this Market when N $\rightarrow \infty$?**

\exists Asymptotic Arbitrage in this Market: (so APT can't hold)

Seq of arb portfs: $\theta_0^N = -1$, $\theta_n^N = \frac{1}{N} \forall n$

$$\implies \mathbb{E}[\tilde{w}_{\theta^N}] = \sum_{n=1}^N \frac{1}{N} \bar{R}_n - 1 = \bar{r}_1 - 1 = \pi_1 = \frac{a\sigma^2}{\bar{D} - a\sigma^2} > 0$$

While $\text{Var}(\tilde{w}_{\theta^N}) = \sum_{n=1}^N \frac{1}{N^2} \text{Var}(\varepsilon_n) = \frac{\sigma^2}{N} \rightarrow 0$

Static Equilibrium Models of Asset Pricing

Market Equilibrium

Invest - Transfer money:

- Deposit accounts
- Mortgages

[The Capital Asset Pricing Model \(CAPM\)](#)

[The Consumption-based CAPM \(C-CAPM\)](#)

Asymmetric Information

Financial Markets: Grossman-Stiglitz Model

Invest - Transfer money:

- Deposit accounts
- Mortgages

No-Trade Theorem

Rational Expectation/Market Efficiency

Market Microstructure: Kyle & Glosten-Milgrom Models

Dynamic Modelling

Dynamic State-Space Framework, FTAP

Invest - Transfer money:

- Deposit accounts
- Mortgages

Arbitrage Asset Pricing (Dynamic)

Dynamic Portfolio Choices

Dynamic Equilibrium Models: Complete Markets, CCAPM

Dynamic Equilibrium Models: Incomplete Markets