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Fundamental Theory of Asset Pricing

Introduction
Definition (Positive Approach) Minimal restrictions of no
arbitrage. Somewhat unique to finance due to wealth of data.

Definition (Normative Approach) Micro-founded model of
portfolio choice = Decision rules = equilibrium restrictions on prices.

Reduced
Form

Positive Approach Normative Approach stuctre

Vector Notation: a = [a1,...,a,] € R"
a>0: a; >0Vi(a€ R})
a>0: a; > 0Vi AND a; > 0 for at least one 1.

a>0: a; >0Vi (a€ IntRi)

Arrow-Debreu State-Space Framework
Environment: (M States) m=1,..., M

Two Dates: t =0,1

t =1 State Space: Q = {wi,...,wn} = M states
Prob. Measure: P over Q, py, := P (wy,), Zf‘f:l Pm = 1.

Agents: (K Agents) k=1,2,..., K

Theory is useful for relative prices useful for absolute prices
Derivative assets Why is S&P returns at 7%/yr ?
Pros Weak assumptions: learn | economics more transparent,
from the data potentially more robust to
policy changes
Cons Prices are endogenous, | stronger assumptions —

world is always changing
— conclusions may lack

external validity
Model may not apply in future

model will always be mis-
specified

This Course:

Ignores: frictions that make supply of risky assets hard (corpor. fin.)

Demand for 4+ Valuation of risky assets.

e Financial frictions

e Capital structure: firm choice of debt/equity

e Moral hazard/separation of ownership and control (exec comp)
e Banking and liquidity

Definition (Gross Return) Change in value of a $1 initial

investment
Payoff(t+1) Xi41
Rej1 = =
Payoff(t) Py

e investor receives cash flow X, without taking an action.

e can choose to liquidate position at market price X;41.
e can choose to reinvest cash flows at market price P4q.
Definition (Net Return) r, =1+ Ry.
Definition (Excess Return) =r; — rf.

Definition (Compound Return) H?:IRH”- = Return from ¢ to
t + k where cash flows are reinvested.

Definition (Returns Stats)
Arithmetic: R4 = * Z:l R; (Artithm < Geom by Jensen)
Note: Arithmetic: quoted, not meaningful

1/T
T Rt] = exp (% ST | log Rt)
Note: Geometric: captures compounding

Geometric: RG = [

T Rj]2

. . T2 _1 T _ 1
Sample Variance: o2 := #17 >,_; [Rt T 2j=1

Stand. Dev/Volatility: 6 = Vo2
Skewness, Kurtosis: Higher moments.

Nonparametric: histograms, bootstrap, Monte-Carlo, resampling. . .
Definition (Risk Premium) 7, = E ['rt — rf].
]E[rt —rf}
Std(re—rS)

Properties (Log Plot) log R(t + k) — log R(t) = Z'};:t+1 log R;
= log R(t + 1, t + k) cumulative log return over holding period [¢, ¢ + k].

__ E[return]

Definition (Sharpe Ratio) SR; = = Unit Risk-

Resources:

e Information: For now, assume all prior info in same P.
Assume Rational E & Homog. Beliefs

e Endowment: 3 one perishable good in economy.

k ko k/ k _k k 14+M
ek = [ef, k) = [eb, ek, . eh ) eRYT
eéatt:O elfwattZI&statew.

Standard Portfolio Problem: elg >0, elf =0.
Nonnegative Endowment: e* € RrrM (ek > 0).

e Production Technology: Pay $I now, get f,(I) att=1&
state w = yo() = 11 y1(1) = (1 (D), -+ S (D))
Assume: f,(0) = 0 (invest nothing get nothing)

& fL(I) >0, fJ/(I) <0 (Increasing but Diminishing returns)

Choices: Consumption 4+ Resource Alloc.

e Consumption: c®:=[cf, k'] = [k, ek, .. ekl e RITM
ct =eo — P’ (t = 0) (How much I eat today)
ek =e1 4+ Di6|, (t = 1, state w) (How much I eat tomorrow)
e Consumption Plan: cK = [cg,clf/

e Consumption Path: [cF,c¥ ] = What we Observe!

e Consump. Set: C := {c¥ : feas.} C R**M; Usual: C = RrrM

Prop: C is a closed + convex subset of RITM,

e Budget Set: Set of consumption plans given by purchasing 6:
B(e,{D1,P}):={c>0:0 c RN, ck =eg— P'0,ck = e1 + D16}

Preferences: How they make choices.
Rational Preference: binary relat Zk over consump C = ]RT'M s.t.

e Complete: a,b € C = a =" b or b >F a or both.
e Reflexive:a € C = a2 a
e Transitive: a 2" b&b>F ¢ = a2 ¢

Continuous Pref 2: & V{an,} » a,{bn} 2 b€C:ap, 2 b, =>a>b
Utility Function: uy : C — R, s.t.

a,beC:azb < up(a) > ur(b).

Strictly Monotonic: ug(c) > ur(c'), Ve > ¢'.

Theorem (Debreu) X C R": 2 rational + cont

= 2 can be represented by a continuous utility function.
Securities Market: (N Assets) n=1,...,N

Security: Financial Claim yielding payoff/dividend D1, at t = 1.
Payoff Vector: D1, = [Di1,...,Dinm] € RM, Dy, at t = 1 state w.
Market Structure: Dy = [Di1,..., Din] = [Diwnlmxn € RMXN
Price: P, € R: price of security n at ¢t = 0.

Price Vector: P =[Py,...,Py]' € RN at t = 0.

Portfolio: 6 = [01,...,0n] € RNV = costi—o = —P’6, payoff,_, = D;6.
Short Sale: 0; < 0 : borrow [0;| of asset j(t = 0), pay 0;D1.;(t = 1).
B Matrix: B :=[-P’, D]’ € RIMTDXN,

Proposition = [eo — P’o, leim + 25:1 Dnlmon]g\“l]

Frictionless Market:

e No access + transactions costs + taxes
e No position constraints + market impact 4 divisible goods

e No information asymmetry

Market Equilibrium:

Optimization: maxg uy(c*) s.t. ¢* € B(e, {D1, P}): Sol®° = 0% (P, e).
ex: M=N=1,D, =1, P=1/(1+r) — borrow/lend at rate r.

ex: M =N =2,e9 >0, e; =0, ¢o fixed, wealth wg = Diag (eg — co)
— choose ¢1, = wpD1Diag (Pfl) 0 =woR10 s.t. 0’1y = 1.

Market Equilibrium: Supply = Demand

Market Clearing: 3K 0% (P e*) =0ie. 5 | =T K €~

—> Gives equilibrium prices P(D1,P, {uk, ek}gzl).
Pareto Dominance:, Allocation c* Pareto Dominates c*’
— u®(c®) > uF(c*)VE and strict for one k.

Pareto Optimality: Allocation ¢® is Pareto Optimal
<= cF feas. (I, ¥ =3, ¢") & A a feasible P.Dominating alloc.

State of nature realizes.
Portfolio pays off

Investor decides
upon her portfolio 6

(facing P) according to Dy .
1 1 S
r T 7
t=20 t=1 t
e,, P e,D
Arbitrage
Replication:
Exclude Asset n: O\, = [01,..., on]) € RN 1 portfolio excluding 0,,,
D\, =[D{,...,Dy] € RMX(N=1) pavoff matrix excluding Dy,.

Definition (Redundant Security) Security n is redundant
<~ He\n s.t. D\nG\n =D,

Definition (Our Setup) rank(D;) =N < M:

— drop redundant security (but possibly incomplete market).
Definition (Payoff Space C1)

Ci1(D1) :={c1 = D10 e RM : 9 € RN} = span (D1, ..
Prop: dimC; = N

., Dy) CRM

Definition (Payoff Replicat®) Payoff ¢; = replicated/financed by 6
<= c¢1 € C1(D1) <= 3 portfolio 0 € RY s.t. ¢c1 = D16

Definition (Complete Market) A securities market is complete
< V payoff ¢; € RM 39 ¢ RN s.t. DO =c;.

<= span(Di,...,Dn) =RM

<= rank (D) =M (i.e., need N = M)

Definition (State-Contingent Claims/Arrow-Debreu Securities)
State-w contingent claim e, € RM has payoff 1 in state w, 0 otherwise.
Definition (Arrow-Debreu Market/Economy)

A securities market with a complete set of A-D securities:

DAP =Inun =Ivixwm (as N = M)
Prop: An AD Market is complete.
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Definition (State Price Vector ¢)
¢, = price of e, at t = 0.
Vector: ¢ = [¢1,...,bnm] € RM.

Set of State Prices: ® = {qs € RM : consistent with NA} (P’ = &'D)
Prop: Payoff ¢ = [c1,...,cm] = Z:’:l €wCuw
Prop: Price of Portfolio 0 = [01,...,0m=n]": P =3N_ ¢,.D, (?)

Definition (Arbitrage)
Given market with structure D, price vector P:
Arbitrage = trading strategy 6 at t = 0 s.t.

1. Require no cash inflow at t = 0: P’ <0
2. Generates positive cash flow at t = 1: D6 > 0

AND one of the inegs is strict.

Note: Arbitrage = rely on prices+payoffs NOT probabilities
Arbitrage = scalable (frictionless market) 4 available to everyone

Principles (No Arbitrage) Frictionless market = A arbitrage

Proposition (Arbitrage Existence) <= 30 ¢ RY s.t. B > 0.
Type 1: B9 = [0,> 0]’ free at t = 0, maybe paid at t = 1
Type 2: B0 = [> 0,> 0]’ paid at t = 0, maybe paid at t = 1

Proposition

Market Equilib 4+ 1 agent w/ strictly monotonic pref = A arbitrage
() invest co amount in it == no equilibrium

Warning: A arbitrage =% Market Equilibrium

Example: (Covered Interest Parity (CIP) Formula)
Date

e Borrow € today at int. rate re.

(1]
e Convert € to $ at the current ex-

change rate S. Doltars [ X (14 1)

e Invest $ at US interest rate rg.

= Must have SAME price F as Cumency | « 5¢/ x F$/E
1
forward contract: FF = S X 1_-:::2 0 +n)
Euros e«

Note: (Limits to Arbitrage)

Pure arbitrage 3 only in perfect markets. In practice:

o Need capital + posting collateral.

e Shorting is costly! People are worried about default risk

e Imperfect Information + Market Frictions — arbitrage
strategies are capital intensive 4+ risky:

- Arbitrageurs use leverage to invest more than their own $.

- Can get margin calls before the arbitrage takes place.

- Short-selling is risky! No limited liability (co losses)

Creative
Computers

0 11|
Tnse s 2180 e e s o1

Figure 1. Paths of stock prices for Creative Computers and Ubid.

@ "To avoid the costly margin calls, the arbitrageur would have had to post
$4.53 of excess cash for every $1 of long position."

o Return with transaction costs/margin limits: 9.5%

o Return ignoring frictions: 45.9%

CIP Violations in the Data:

- Arbitrage is associated with opportunity costs

- Regulations = only financial institutions can close the CIP arb.
- High capital requirements for trading to close CIP arb. (very high
costs at quarter ends)

Fundamental Thm of Asset Pricing (FTAP)

Valuation Operator:
Definition (Asset Pricing Model) Mapping from a securitys payoff
vector d to its price P: P = V (d).

Definition (Pricing/valuation operator) V : RM D Cy(D) —» RM
d— P =V(d).

Theorem Under No Arbitrage: d,d1,d2 € C1(D),a,b € R
Positivity d >0 =— V(d) >0,andd=0 = V(d) =0
Law of One Price di =do = V(d1) = V(d2)
Monotonicity di > do = V(d1) > V(d2)

Linearity V(a-di +b-d2) =aV(di) + bV (d2)

Theorem (FTAP) A arbitrage in market

< 3¢ > 0s.t. P’ =¢'D (ie., P=D'¢).

¢ € RM+1 = State Price Vector implied from D and P.
Note: Given ¢, can price any traded asset (don’t need P or Q).

Proposition Redundant securities = ¢ is not unique.

May find ¢ that are not > 0. If A¢p > 0 — I arbitrage.

Definition (DCF/PV Formula) P, = ¢'D,, = > PwDnw

Proposition ¢ > 0 = all AD prices are arbitrage-free.

Note: ¢, = price of a hypothetical AD security (whose payoff may or

may not be achievable).

If ¢ large in bad states — insurance.

Theorem (Stiemke’s Lemma) 3¢ > 0 (€ R™) s.t. P’ = ¢'D

<= A0 € R™ s.t. BO > 0.

Example: (Incomplete Market) D = (1,2,3),P=1:

= ©={6>0:¢'D=1}={¢>0:¢1+2¢> +3¢3 = 1}.

Price Dy = (2,2,2)" : P2

Example: (Incomplete Market II) Find price P, of new security

with payoff b s.t. b ¢ span (D1) (i.e., not redundant):

Py={¢b:¢>0,P' =¢'D1}ie, inf ¢b< P, < sup ¢b
PEP>0 PEDP>0

If Security b is redundant: P, = {P6:0 € R™, D160 = b} = ¢b.

Special Case — Complete Markets:

Proposition Complete market = ¢ = (D~ ')’ P.

Theorem No Arbitrage = 3!¢ € RM s.t. P/ = ¢'D.
Furthermore, 3 portfolio 6§ € RV s.t. ¢ = D6.

Note: If D has redundant columns: € not unique BUT ¢ is unique
Proposition Complete Market + No Arbitrage = 3l¢ > 0.

State-Price Density /Risk Neutral Measure

Definition (Risk-Free Asset) Payoff: Dy = 15 € RM i.e.,

Dy, =1, Yw € Q, with price P; = 71+1rf = u]\)/1:1 b =@ 1nr.

Definition (Risk-Neutral Measure) Q = {q, : w € Q}, where
— ¢ — f

qu = Ew’u‘;w’ =1 +7r")¢o

Prop: g, >0, > qu =1 and Q ~ P (agree on zero-measure sets).

Idea: Probabilities/riskiness hidden in state prices ¢.
—> Q = normalized state prices (# P : tied to data/observed).

Risk-Neutral Pricing:

1. P/ = ¢'D = get state prices ¢.

2. Get RF rate: 1+ rf = Ewlfbw .

3. Construct Q = {qw = 72:i%w/ =1+ rf)¢>w}.
4. Price any asset with payoff vector D,,:

P = E?-i[-??] = 1+1rf 2w wDne-

EP[Dy,)

5. Get Expected Return: 1+ 7, = (1+ rf)]EQ[D ik
n

Definition (State-Price Density/Stochastic Discount Factor n)

Idea: P, = ¢/Dn = E¢anw = pr%an
= Nw = i—:’, Yw € Q. Prop: 1, > 0, n € RM, EF [5] = 1+1y~f .
— n = PAIN INDEX! n small — good state; n big — bad
(how worried people are about the future)
Note: 7 is hard to observe (unless market is complete)

g P (7 E—
Proposition (P ~ Q) E' [X] = 1+1rf E? [%], & ¢ = 1irf = Puwiw
Note: p; > qi = payoffs in state i are very valuable

Idea: 7 removes the probabilities from ¢: it will add them with EF [].
SPD/SDF Pricing: you must know P = {p,}:

1. P = ¢'D —> get state prices ¢.
2. Get SPD/SDF: n = j;—g.

3. Price any asset with payoff vector D,,:
n = EF [’I’]Dn] = Ew PwNwDnw-

. — _ EFDn)
4. Get Expected Return: 1+ 7, =

EP[D,) _
P, EF[(nDy]"

5. Get RF rate: 1+ rf = EPl[n] .

Theorem (Representation Thm) 3 a positive pricing operator V
<= 3 risk-neutral measure Q & riskless asset r
< 3 SPD/SDF 7> 0.
Discounted Cash Flow (DCF)/Present Value (PV) Formula:
Definition (Discount Rate/Expected Rate of Return)

=~ _ E'Dn) _ EPDn) FVEF[DR] _ EQDy/n)
L = =5 = Fipn) — O E0D, T R
Definition (Rate of Return) Random 7y, : 7y = DV:L“’
Note: 71, = rf, EF [,,] = 7., and 1 + 7, = g—s

-1

Definition (Risk Premium) m, = EF [Fn — ’r‘f] =7n —rf.

P
Proposition (DCF/PV) P, = 5{2nl = ZwpeDnw
- o)
Pi=Y,¢0=1tyandm = 1= 4 1]

Proposition (Risk Premium)
EF[1 4 7n] = (1 4+ #9) (1 — Cov® (n,1 + Fn))

= m, = EF [anrf] :—(1+rf)CovP (T/,anrf>
and ]EQ[fn] =rf vn — EQ [fn—'rf] =0Vn
() P, =E" [nD,] = 1=E [nD,/P,] =E [n(1+7,)]

1=E [nE" [(1+ 7,)] + Cov (n,1+7y)
Idea: Asset performing well in bad times earns lower returns.
“—” sign: if make money in bad state (insurance): pay for it!

Decomposition: D, = Proj(D,|n) 4+ €, where e L n & E[e] = 0.
Pj = Py <= Proj(Dj|n) = Proj(Dx|n)

Note: p(n,D,) =0 = 7, = rf (but 7, # rf) and P, = %
Example: (Log-Normal Case) logn and log(1l + 7, ) jointly normal:
= E” [log(1 + 7,)] — log(1 + r¥) + I Var® (log(1 + 7)) =

—Cov” (logn, log(1 + 7))

Theorem (Hansen-Jagannathan Bound) Sharpe Ratio of asset n:

" VarP(rp—rf) T BTl
) l"T’/’ 7 = —Cov <1;. Trn — 7'f> < —(=1) - /Var® (n)/Var® (7, — rf)

Definition (Entropy of a r.v.) X > 0:

L (X) = log EF [X] — EF [log X] > 0.

Theorem (Entropy Bound) LF(n) > EF [log(1 + 7,)] — log(1 + rf).
Note: Can observe SR > 0.8 = n VERY volatile

Many models generate o(n) & L*(n) much lower than bound
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FTAP: Corporate Finance

Assumptions
(1) Not restricted to financial assets (allow agents to invest in real
productive opportunities)
(2) Securities market: frictionless + complete

—> complete set of AD securities traded with price vector ¢ > 0
(3) Endowment e = [eq, e]]’.
(4) Firms = only defined by the production technologies they possess
yo: investment into the production opportunity at ¢t = 0
Y1w = Yu (Y0), Yw € Q: output from productlon at t = 1, state w
Assume: y,,(0) =0, y/,(-) > 0and y//(:) <0 (dlmlnlshlng returns)
Production Vector: y1 = [y11,.--,¥1Mm]"
(5) Agent wants to maximize utility u(c)

Definition (Investment NPV) v = ¢y —yo = 3 ¢w¥w(¥0) — %o

Definition (Agent’s t = 0 Wealth)
w=eo—yo+¢(e1+y1) =eo+¢'er +v

Definition (Agent’s Optimization Pb) maxy,cq,c; u([co,c1]")
Solution: s.t. w=co+¢'cy
(1) Choose yp to maximize t = 0 wealth (NPV of production)

FOC (dv/dyo): 1= 6"y (y0) = E [n v/, (v0)] = 757E [v],(vo)]

y(-) concave = wv(-) concave = unique solution

= Optimal prod® decision = indep of agent’s consumption decisions!
Only depends on prod function & state prices

(2) Choose ¢ to maximize utility u(c)

Corporate Investment Decisions:

Production opportunities are owned by firms:

j=1,...,F firms with Prod Tech y;(y;j0) € RM

skj = share of firm j owned by agent k: Y, sx; = 1,Vj

Firm’s investment NPV at t = 0: v; = ¢’'y;(yj0) — yjo, Yk
Agent k’s wealth: wy = ero + ¢'en1 + Zj Skjv;j

Firm’s investment decision: if firm j owned only by agent k,
Decision on firm’s investment = maximize v;: d>/yj (y50) L 1
Decision is indep of agent’s endowment & preferences

= firm’s optimal investment decision indep of who owns it.

Theorem (Maximize Current Market Value) Frictionless +
Complete market: 3 unanimity among firm’s shareholders on
investment decisions (maximize NPV) separate ownership/mngmt!

Financing Decisions (Capital Structure):

Definition (Financing Decision) How firm raises funds for investmt
Definition (Capital Structure) Mix of securities issued by firm

Assumptions Firm financed by debt & equities:
(1) do = D debt issued at t =0

(2) ep = E shareholder’s equity at t =0

So: yo = do + eo

(8)di & ey € RM (debt & equity at t = 1): y1 =dy + e1
Proposition D = ¢'di, E=¢'e; and V =D+ E = ¢'y;1.
NPV (Equity)= ¢'(y1 — d1) —eo = ¢'y1 — (do + e0) = ¢'y1 — yo

Theorem (Modigliani-Miller) Frictionless + Complete market:
firm’s NPV determined only by investment decisions (indep of cap
structure)

Example: (Labor vs Wage) Firm: hire L labor at wage W
— produce output Y(L) = AL® (@ < 1), log A ~ N(A,0%)
Can borrow at r, and Log-SDF: logM =§+¢ ,e ~ N(O, O’g)
Assume correlation between log A and €: 0 4c.

PR E(MA]\1/(1=a)
Firm’s problem: mlale—WL-&-]E[MALO‘] = L= (%)

s

1 2
50'5 + oAe )
R

ignore if ag =0

where: E[MA] = exp(6 + A4 %o’i +

Math Tricks

Theorem (Iterated Expectations) X ar.v., F1 C
E[X|F] =E[E[X|F2] |F1]

Definition (Normal Distribution) X ~ N(u,o?):

PDF: fx(z) = L__exp ( — (@=w)?
NZ) 202
Transfo: Y =aX +b = Y ~ N(au+ b,a’c?).

MGF: Mx(t) =E [eftx] = exp (pt + Lo?t?)

Prop: X 1 Y — ]\'fx+y(t) = Alx(t) - ]\rfy(t)

Definition (Multivariate Normal) X ~ N(u,%), X,u € R™ :
PDF: fx(z) = WEXP (—3@—w'=" (- p).

MGF: Mx (t) =E |:€7 Yt tiXs } =exp (t'p+ $t'St), with t € R”.
Correlation: X,Y jointly normal with correl p:

Mx 1y (t) = exp ((1 + pa)t + (07 + 03 + 2p)t?)

= (X +Y) ~ N(u1 + p2,05 + 03 +2p)

Example: (CARA: Normal) U = —E [exp (— aZ)] Z ~ N(p, 2)

more mfo

= U=-Mgz(a) = —exp (—ap + —a20'2) —LlogU =p— 3ac
Example: (CRRA: Log-Norm) U = —E [ } log Z ~ N(u,o
= U= ﬁMuf«,)z(l) = ﬁexp (@ =v)p + 11 -9)%?)
FTAP: Fundamental Value of a Stocks
Cash Flows: X; = D; + P, (dividends + share price)
Returns: R; = —: = Dt+Pt
Assumptions No Arbltrage holds Vt = dny4xVk
Theorem (PV of Future Stock Payoffs)
Py = E¥ (41 (Pey1 + Diy1))
= P, =E (3721 nest4 ke Degr] wWith neeqr = 1_[?:1 Ne4j
_ wQ +k
& P =E [Ek 1 <1+rf>k]
() P = Ey LZ,\,[(W F1 0 Metk) Dy /‘J +E¢ i1 T Perr]
Definition (k*" Period Return)
EP [R(k) ] _ _ EE[Desk]  _ EilPayoss
tittk B¢ [Me:t4+k Detr] Price

k k
—> P =B} [nearnDesr] = Ef [Desnl/Ef [RED,,]
—— Price of 1 divident k periods in future

Theorem (DCF of Future Stock Payoffs)
oo (k
Py =E; [ neernDigr] = 1 B [Dogr] /EY [ t: t)+k:|

FTAP: Fixed Income Securities

Idea: Assume default-free securities (e.g., US T-Bills)

Definition (Bond) Coupon payments + principal/par/face value
No coupon —» Zero-Coupon/Pure-Discount Bond

Zero-Coupon Bonds (ZCB):

Py ¢+ = price of N-period bond at time ¢t that pays FV = 1$ at t + N.
Proposition Any N-period default free coupon bond = portfolio of
zero coupon bonds: Price; = Z CFiyj- Py

Assumptions n = n(s) depends on state variable at ¢

(1st order) Markov State Variables: sy € {1,...,S}.

T(St41,8¢) := P (8441 = s|s¢, past) = P (s¢41 = s|s¢)

= Pn,: = Pn(s¢) (price depends on maturity + state only)

No Arbitrage: Price = E [discounted payoffs]

j=1

Proposition (1 period) Take N = 1, state s; = j:
Pyt = P1(j) = E¢ [ne41]

) P1(j) = 2201 P(se1 = slse = 5) m(s) -
Proposition (IN periods)
Png =Ey [77t+1PN—1 t+1] = B¢ [ne41 X -
() Pa(se) = >0 m(Se41,5¢) Pr(set

(18) = >>2_, w(s, )n(s)

- X e N ] = B [e:e4n]
1) = E¢ Mer1Eegr [Meg2]]

Yield Curve (YC)/ Term Structure of Interest Rates:

Definition (YTM) For ZCB, Yield To Maturity = per-period gross
discount rate — geom. avg of cumul return (hold ZCB until maturity)

= [rt] = i — =[]

Prop: Prices & Yields/returns move in opposite directions

[payoff/price — PNt =

Definition (Log-Framework) pn,¢ = log Pn ¢, yn,t = log YN ¢
Prop: yn,t = —&PNt <> PN =—N-yn

Definition (Elasticity) of the bond price w.r.t. the yield:
dPN ¢t
dyN . ¢

=—N=-long maturity ZCB is more sensitive to same change in y

Properties
e YTM = avg rate of return over the life of the loan:
YTM across maturities — different units.
e ZCB prices: Pn,+ = exchange rate between 18 today & 1$ at t + N.

P 1%
. Pf:z = 1$212 low == cheap to transfer cash from ¢t + 1 to t + 2

Ex: recession at t which will end by t 4 2

Proposition (YC Recipe) Py :=E¢ [n¢¢4n5]: YCSmoments of SDF
(1) Define State Variables: z; (data = need at least 3).
(2) Assume SDF n; = n(z¢) or Log SDF m: = logn.
(3) Give law of motion for x; under P (use 7(x¢y1,2¢))
OR Give law of motion for x; under Q (use /)
(4) Sol°: Iterate on pricing eq. Pn(z¢) = E¢ [n(xt+1)Pn_1(zt41)|zt]
(5) Guess pn,¢+ = log(Pn,¢) ~ affine in z; & find coeffs
Example: (Vasicek model, 1977)
(1) One State Variable: x;

(2) Assume Log SDF: m; ;1 = log(ni41) = —z¢ — (%)2 — 2e441.
(3) AR(1) under P: w41 = p+ ¢zt + 0e441; with ¢ < 1, &¢ i N(0,1)

(4) Sol°: Iterate on pn,: = log B [exp (my41 + PN—1,t+1) |z¢]

Use: (z¢41|Ft) ~ N(pu+ ¢z, 0) and (m1+1|.7:t) ~ T — 3 (%)2
p1,¢+ = logE, [cxp(mt_*_l)]_—mt——(f) + ( ) =0—1- -z

— Short Rate: z; = y1; = log(1 +rf) — mean-reverting AR(1)
p2,t = logEq [exp (mi41 + p1,¢41)] = log By [exp (M1 — Te41)]

= -1+ @zt [-5(3)+u+3(2+0)?] =+ B2 m

(5) Guess pn,t = Ap + By - ¢

Pnt =An +Bn -t = pni1,t = Ant1 + By -
Bn=—1+¢Bu1 =%
Apn=Apn_1+Bn_1(pu— ,\)+ iB2_ | o?
Example: (Cox-Ingersoll-Ross, 1985)

(1) One State Variable:

(2) Assume Log SDF: my;1 = —x¢ — % (A)th — (A)

a

x¢ with:

0.5
T, "€t q1-

iid

(3) Under P: z441 = pu + ¢zt + U'wt 5t+1, with ¢ < 1, e, ~ N(0,1)

(4) Sol®: Iterate on pn,; = logE; [exp (mi4+1 + PN—1,t41) |T¢]
Use: (myq1|oe) = est — (2) 2 %eeq1 and (pn—1,e41lze) L eega
=(mip1+pN_1,t41]Te)~VN(Eg[meyp14+pN—1,¢41], SDe[mep1+PN—1,e41])
= pN,t =Bt [meq1 + py—1,e41] + 3 Vare [meyr + pv—1,641]
= pn,t = B¢ [mig1 + pn—1,041] + 3 Var, [mi4a]

+3Vary [py—1,¢41] + Covy (Mig1, PN—1,641)
= p1,+ = B¢ [mega] + 1§Varf [my¢41] therefore:
=p1,e+E¢ [pN—1,e41]+ 3 Vary [pn—1,041]+Covy (Mmig1, PN—1,141)
= pre=-—z— 3 (3w +3(3) e = —a
— Short Rate: z; = y1; = log(1+r') — mean-reverting AR(1)

Il

N,

-

(5) Guess pp,+ = A, + By, - o4, therefore:
Prt1,t = P1,t + Bt [Pr,e41] + 3 Varg [pn,e41] + Cove (Meg1, Pr,es1)
= -z + [An + Bu(p + éx0)] + 5 [Bhoai] + [ Bniz]
=[Ay + pBo] 4 [-1+ (¢ — N)Bn + (1/2)0° B2 z;
—_———

Apt1 Bpnt1
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Proposition (Bond Pricing with Real Returns)
Real: SDF=n], Price=P; — P} , = E, [nt+1P 1,t+1]
Nominal: SDF=7,, Price=P; and Price Level: I,
= Pn =P, ,II; =E; |:77Z+1Pn71,t+1

oy
RS

=" L _.,r 1
M4+1 = M1 W,y = 1 Thmg g

Proposition (Fisher Eq.) If inflation risk uncorrelated with risk:
oy U Efren]) = oty = 1o — Eemega]
(".") Take expectation above: E; [ni41(1 + 741)] = Ey [7/; b I}

FTAP: Options

Definition (Derivative Security) Contract whose value derives
from the price of another security or observable outcome.

Definition (Underlying Asset) X, = Payoff of asset at time T' > ¢,

s.t. f(Xr) = payoff of derivative security at T' > t, f(-) known.
Note: Payoff at T' > ¢ can be path dependent: f(X¢y1,...,X7)

Proposition (Derivative Price) Given n: PP = E; [nu.r - f(X7)]
Note: Often, derivative = redund asset = use replicating portfolio
Definition (Long Forward Contract) Obligation to buy an
underlying asset at a pre-specified price K at time 7T'.

Prop: Payoff = Sp — K

Definition (Credit Default Swaps) Insure debt-holder against
losses from default.

Definition (Interest Rate Swaps) Insure investor against interest
rate risk: exchange (fixed set of cash payments)
+— (floating payments tied to interest rates)

Proposition (Arrow-Debreu) e AD security = derivative security
(*.") Underlying Asset = is the state of nature — see HW2-Q3b
o ANY Derivative = Portfolio of AD securit: PP =M 4, - f(X.)
Options:
Definition (Stock/Underlying Asset)
So = price at t =0 S1 (or S) = payoff at t = 1.
Definition (European Call/Put Option) On the stock:
Contract giving buyer the right to buy/sell stock from/to seller of
option at t = T & price K.
T = 1: maturity/exercise date ; K = strike/exercise price
Payoff: Call ¢; = [S1 — K]+, Put p; = [K — S1]4.

Payoff of a Call at T Payoff of a Putat T

N

Example: Payoff Depends on Price of Underlymg Asset at t =1
Straddle (V) = call(K) + put(K): [S — K]+ + [K — S]+
Butterfly (A) = call(K — §) - 2 calls(K) + put(K + §):

[S— K464+ —2[S—K]4+ +[K—-5—-94]+

* * * Let Doy = required debt payment on firm:

Equity = Call option on assets of firm: E = [A — Dy, 0]+

Debt = RF Bond — put option on assets: D = Do — [Dg — A]+

200 Firm Assets, #

Equity <"« Debt

Firm Asset Value ()

No Dividend: ¢(S,
With Dividend: D at t = O c(S K) + 7 K ++D=p(S,K)+ S

Price: C(S, K) American Call ,

Prop: C(S,K) > ¢(S, K);

Definition (Intrinsic Value) Call: I =5 — K ; Put: I =K — S
In-The-Money: I > 0, S > K (call), K > S (put)
At-The-Money: I =0, S = K (call), K = S (put)
Out-of-The-Money: I >0, S < K (call), K < S (put)

Pricing Properties:

Proposition (Arbitrage Pricing Properties of Options)
¢(S,K) = V(c1): call price ; p(S, K) = V(p1): put price

e Option prices are > 0: ¢(S, K) > 0 and p(S, K) > 0.

oc(S K)\ in K and p(S, K) # in K.

(.

\/l\\ > Ky = o(S, K1) = V(IS — Ki]+)

e ¢(S, K) and p(S, K) are convex in K.

() oS, K) =3, ¢ul(Sw — K)

= c(S,AK + (1= MNK') =3 ¢u(Sw —AK — (1 = N)K') 4
<3 Pw [A(Sw — K)oy + (1= A)(Sw — K') 4]

Proposition (Portfolio of Options) Let 6 > 0: portf of N assets;

Price S = [S1,...,Sn]" > 0 ; Strike K = [K1,..., Kn] > 0. Then,

c(870,K'0) < SN 0:¢(Ss, K;) and p(S70, K'0) < SN 0:p(Ss, K;)

< V([S — K2]4+) = ¢(S, K2)

Note: Option on a portfolio < Portf of options on assets in portfolio

(") Payoff of option on portfolio = [(S — K)"0]+ = [>,(S: — K;)0;]4
< >7,;[8i — K;]0; = payoff of portfolio of options on each assets
Proposition (Option Price Bounds) S > ¢(S, K)
If 3 riskless bond 7 [S - Kf] <e(S,K)< S

147 +
(") Long 1 stock; Short K bonds.
Payoff =S — K (t =1) Price=S - K/(1+r ) (t=0)
c1=[S—Kls >S—K = ¢(S,K)=V(c1) > S — K/(1+%)
Proposition (Put-Call Parity) If 3 riskless bond r:
=p(S,K)+ S

(") e Long 1 Call(K) + K Bonds
e Long 1 Put(K) + 1 Stock

= SAME Payoff at t = 1: K (if S < K) and S (if S > K)

Early Exercise:

Definition (American Option) Buyer can exercise at any t < T.
P(S, K) American Put

Assume: to = T — 1: can exercise now or wait <> European option
P(S,K) > p(S, K) (‘> if P(early exerc)> 0)
Definition (Dividend) Payoff prior from the stock (before maturity)
— Dividends can influence early exercise & value of American opts
Proposition (No Dividend: Call) /> 0= Do NOT exercise early

(N =8-K<85- K <|s- K = v’

14rJ 14rf
1st Ineq: Pay strike price now, not later. Last Ineq: Give up the opt
not to exerc at maturity = V(c{*’ ”) < V(et™n)

Proposition (No Dividend: Put) rf> 0= CAN exercise early
() P(S, K)=max{K-S,p(S, [\')}:mnx{ (S, K )}

”'1

c(S,K). Ex:
Gain: Get strike price now, not later.
Loss: Give up the opt not to exercise at maturity

Proposition (With Dividend:) D= Divid (¢t = 0), S=ex-divid price

Optimal if: 1’/ K > K much bigger than S
-

Call: C(S,D,K) =max{S+ D — K,c(S,K)}
Put: P(S,D,K) =max{K — S — D,p(S,K)}

(*.") American Call: 2 choices at t =0
1) Exercise & get: dividend D + S (sell stock ex-dividend)
2) Hold option to maturity (¢ = 1).

— Divids induce early exerc for calls & delay early exerc for puts

Complete Markets:

Recall: Complete Market — 3 a unique state price vector ¢.

Note: If 3 RF bond, then market is complete.

. . _ EQ[s-K],]
Proposition (European Call Price) ¢(S, K) = —F
) e(S, K) = ZW ¢w (Sw — K)4, where S, =stock price, t = 1, state w

Theorem (Binomial Pricing)
Assume: 3 RF bond w/: t =1 payoff 1, t = 0 price B = f
+r
Stock price: binomial process S1 = uS (w.p.p) and Sl = (IS (w.p.1—p)

Note: u&d=gross return on stock: NA = d < 1+ rf <u
- C(S, K) = dzu[uS — K]+ + d)d[dS — K]+ with

14rf—d . ' :
{cu =S - Ky Jou= - {5 = $uuS + ¢adS
. _q1_.f ) 1
cqg =[dS — K|+ ba = 1+1Tfuu17dr 7 = ¢u + ¢4

Portfolio § = [0s,05]
= (S, K) =055+ 0515 = 5 (“J_f;dcu T Cd)
with {pay‘)ﬁ“ . ) {H - l:
payoff, = 05dS + 05 = cq 0p = —l—5+
Given State Prices ¢:

bu 14/ —d

Putodd

= 0suS + 05 = ¢y

EQ[IS—K] ] _ geut(i-a)ey

(8, K) = 14T 14rf

() a=

u—d

Market Structure - Completing Markets with Options:

Definition (State-Index Security - SIS) Security/Portfolio with
state-separating payoff X: X, =X, <= w=w'
Assume: WLOG X, < X/ Vw < w’

Example: (European Option on SIS) Eur. Call Option on SIS X:

Strike Price: K = X,, = Payoff: (nonzero for states > w + 1)

1 =[X = Xul4=100,...,0, Xpp1 — Xu, ..., Xar — Xo] € RM

Proposition (Completing Markets) Assume: One SIR X > 0 and

(M — 1) options on the SIR with strike prices X1,..., X1
X 0 0 o
X2 X2—-X1 0 o

Xs Xs-Xi Xs—Xz - 0

Payoff: D =lxu xu-x Xu-X: xu-Xu | full rank = Complete Market
§ 0 Lo 0
Example: Let X,41-X, =0 >0: D = ‘2.6‘ 6 0
Mé (M —-1)6 - )

Note: Get AD Security/State-w contingent claim with butterfly (A):

Long 1 Call((w — 1)§), Short 2 Calls (wd), Long 1 Call((w + 1)d)
= pays § only in state w: Payoff=[0,...,w,...,0]
Get State prices & risk-neutral measure:
Pw = % [(e(Kwt1) — c(Kw)) — (C(Kiu) — c(Kw-1))]
Price of ANY security with payoff D:
- 2, -
Py =3, ¢uDu — [3° L D(K) dK
a2e(K a2e(K
= 8= [ ZLUO0X(K) dK and B = [3* ;( ) 1dK

2
Recover Q measure: g(K) = 6667(21{)/ I 8607(2}() dK ; VIX = STD(Q)

Exact Arbitrage Pricing Theory (APT)

Idea: Price redundant assets using set of prices of base securities.
—> Put constraints on SDF n: restrict co-movements of CFs

Beta/Expected Return Decomposition:

Note: If rank (D) =

Theorem (FTAP Recall) Assume NO Redundant Asset:

NA =3!¢* € RM s.t. P/ = (¢*)' D, where ¢* = D0 for some 0 € RN
N, then D’D full rank: P’ =6'D’'D.

— 0* = (D'D)"'P, ¢* = D(D'D)"'P and n* = ¢*Diag(p) '

Proposition (SDF Mimicking Portfolio) Assume 3r7:

Construct portf mimicking n: 7, = E¥ [r_,] — (n — EF []) = cst — n*
Furthermore, n = EF [r_,] + EF [5] —r_,,

Note: r_, achieves H-J bound: maximum Sharpe Ratio!

(") (1) Construct Portfolio with payoff n*: Price = Z\,I L PN,
(2) \’\Ant Payoff = Return i.e., investing 1$ gives return (l +r_y ):

—— Need to invest 1 + le L PN, in RF asset.
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Proposition (E [returns] Decomposition)
Fund. Asset Pricing Eq: 7, =E" [rn — rf] =—(1+ Tf)Cov]P (n, Ty — rf)

P
[ g f] ) g
== 7w, =E [rn T } = VarP () A=0Bn-A
with A :=EF [r_,,] — rf = (1 + rF)varf (n)
() Ai=E [r—y] — rf = —(14+rHCov® (n, —n) = (1 + rH)var® (n)
n=E [r_,]+E [n] —r_y, =\+rH)+ . l,,f —r_q
= n=A+—"1= —(r n — rf) = 7w, =+ +rH)Cov (r nsTn)

14+ f
Definition (Market Price of Risk) A = market (r_,) risk premium
— compensation an investor receives per unit of exposure to SDF
Definition (SDF Risk Exposure/Loading)
Brn = loading of asset n on (r_, — r)
Prop: Asset n’s expected return depends only on its loading S,
6&1(7'” ,r_n)

Var(r_y)
Assume IID realizations of returns indexed by ¢. Do OLS on:

nt — ) + et with E |::”_f‘7' n— /"} =0

Proposition (OLS Estimation of 3,) Brn =
)
Fot — 1) = an + B (r
Definition (Idiosyncr Risk) rn,¢ — rf = o + Bn(r—ne — rf) +en,t
= (abnormal ret) + (co-mvmt w/ SDF’s excess ret r_,) + (idiosyncr)
Proposition (Var Deco)Var (rn - rf):ﬁiVar (r,n — rf)—i-Var (en)
= Variance = systematic/priced var + unpriced/residual var
Assumptions (Joint Hypoth) No Arb + Correct SDF model r_, ;
= Stocks w/ different €, ; & same 3, earn same return ry ;

— a, = 0! If get oy, > 0: reject BOTH hypoth: 3 Arb OR bad SDF
Definition (Security Market Line - SML) Plot: E[ry,] vs. 8y
Slope = A (market price of risk)

Factor Structure:

Assumptions M states, N securities w/ payoff matrix D

e J RF security (assume n = 1 is the RF asset)

e rank (D) = K < M — 3 redund assets

Definition (Factor Structure) F= Basis for D

F =[F,...,Fg] € RM*XKX and F), € RM*1

Definition (Betas of Payoffs on Factors) Bz € R¥

Payoff Space C = span (D) = {D9 10 € ]RN}

— VZ €C, 387 = Bs1,...,Bzk] st. Z = FBy

Any payoff Z € C can be spanned by the factors: Z = F@z
Conversely: Any factor can be replicated by securities in D: Fy, = D0y,

Proposition (Factor Pricing) 3 coeffs A =[A1,..., k] € RE
sit. V(Z) =X Bz = S8y MBzr , VZ € C.
() NA > AV (:) linear: V(Z) =V (32, BzrFr) = > ) BzrV (Fi)

Note: Ay = —V(F},) is INDEPENDENT of Z!

— F}= risk factors & A\p= market price of risk

Definition n =1,..., N Securities:

e Gross Return: R, = D, /P, € RM

e Market Structure: R = [Ry,..., Ry] € RM*¥

e R, =E'[R,] e RM, R=[Ry,..., Ry] € RM*XVN

ec, =R, — R, €RM e =1[e1,...,en] € RMXN

e Bn €RN , B=[B1,...,Bn] € RFXN

Proposition (Factor Pricing for Returns) Assume EF [¢,,] = 0:
Ry =Rn+éen =Ry +FBn=Ryn+ >S5 | FuBur

— R=R+4+e=R+FB (soneed Ef [Fg] =0)

— One RF factor ¢ := F} = 17 and (K — 1) risk factors
Example: (2-Securities) Gross returns:

1 w.p. 0.5 1/2 w.p. 0.5
1 w.p. 0.5 2 w.p. 0.5
Ry =0.5(1+1)=1and R, =0.5(1/2+2) =1.25

R, =R, +&, = £0 =1[0,0]" and &1 = [-0.75,0.75)’
Risk-free factor: Fy = [1,1])’. Only 1 Risk factor: e; = Fy - 81
= Fy =[-1,1),6; = 0.75

Security 1: 1 — { Security 2: 1 — {

Q
Lemma e The value of any gross return is 1: V(R,) = % =1

D -
[\u);_ 1

(") Asset Payoff=D: V(D) = /j//ﬂ
Note: I pay 1$ today, get back R, $ tomorrow

e The value of the sure Gross Return is 1: V(RY) = V(1 ++rf) =1

e Under Q: E?[R,] =R/ = E%[R,]- R/ =0

Theorem (Exact APT) Let R, = R,, + FBn, n=1,..., N, where:

= V(R) = /}, ES

(1) F = [F1,..., Fk] (K risk factors, EF [K] = 0)

(2) Bn = [Bn1s---,Bnk]’ (asset n’s beta)

NA. = R, -R =7, -1 =35  MBur =NBn ,n=1,...,N
where A\, = —E@[F] and A = [A1, ..., Ak]

() RI=E%[Rp] = E® [Rn + 4, FiBuk| = Bo+ 1, BurE° [Fi]

Definition (Portfolio Beta) Given portfolio 6:
Its beta on risk Factor k: B = 25(:1 0:Bik
Definition (Factor Mimicking Portfolio)
Portfolio 0y s.t. Bri =0k (1 =1,...,K)
Prop: For each factor F}, 3 a factor portfolio 0

0, Factor Portfolio => Fy = Ry — Ry = rp — 7
Definition (Factor Premium) X = Ry — Rf =7, —rf
— Expected excess return on factor portfolio
Proposition 7, — rf = Zi;l Ak Bnk = Zszl Bk (T, — Tf),
where A\ = 7 — rf: risk premium of k" factor portfolio
(".") Under Exact APT, use factor portfolio

General Arbitrage Pricing Theory (APT)

Exact-APT Issue: Need Complete Market(K = M) = large #factors
Idea: We want:
e Model: large M (# states) & N (# assets) BUT small K (# factors)
e Study implications of No Asymptotic Arbitrage (NAA)
General Factor Model:
Assumptions (Factor Model for Returns) Suppose:
Tn =Fn+EkK=1[3nka +éen, forn=1,..., N
with: (1) EF [Fy] = EF [e,,] = EF [en|Fk] = 0, VK, n
(2) E¥ [e2] = 02 < v < 0o, and EF [ene,,/] =0 Vn # n/
Note: Exact Model: €, =0 for all n
Note: (Matrix Notation) Let r =7 4 Fj3 + ¢ where:
(1) EP[F] = E [e] = E" [e|F] = 0

(2) = :=EF [¢'¢] = Diag(01,...,0n)

r=I[ri,...,rn] € RMXN, F=[F1,...,7n] € RMXN
F =[Fy,..., Fg] € RM*XK e=le1,...,en] € RMXN
Bn = [:37111"‘1/371K]/ ERK7 B = [ﬁlw‘wIBN] G]RKXN

Proposition (Variance Decomposition) Under Current Model:
Varf (r,) = g/, E* [F'F] Bn + Var® (e,,)

CovF (ry,7;) = BJEY [F'F] Bj for all i # j () Cov' (c;.2;) =0
Diversification:

Definition (Return on a Portfolio) rg =79 + FB8¢ + €¢

where: rg = 0r, 79 = 07, Bop = 03, €9 = O¢

Definition (Well Diversified Portfolio) 0 € RN Well-Diversified if:
0, = O(1/n) , where 0 = [01,...,0n]", 0'1n = 30_ 0, = 1.

Note: 6, = O(1/n) <= n-||0]|> <

Definition (Well Diversified Sequence of Portfs)

{6322, with 6,1, = > | 6,,; = 1, is Well-Diversified

< Ik € (0,00),st. 02, <k/n®,Vi=1,...,n,Vn>1

Note: 0,= [L,..., L] =diversified, but [0,...,1,..
Definition (Equally-Weighted Portfolio) 8 = [4,..., %]’
Prop: Var® (0'r) = Var®” (Zf:] %rn) =+ [% 7;\:1 Var” (rn)]

+ (1= ) [ S0 2N, Cov ()|
Ifr, =7+ F+e¢,, Vat (en) = a?:
— Var® (G'T) = %af + (1 — ﬁ) Var® (F) — Var® (F)

., 0]’ =concentrated

Idea: Covariance with risk affects an asset’s risk premium. Should
only price systematic risk (explains returns’ variation across all assets).
But can 3 non-priced syst risk (e.g. linear comb of s not associated
with changes in E [ret], Ay, = 0 for some k in APT)ex: Risk Neutr ppl
Theorem (Diversification Thm) {6,}.2 ; well div portfs seq:

Var® (g9, ) = Var® (7, 0,,:6:) —0 at rate O(1/n) (i.e,n - [|0;]| < C)
Note: Well Div portfs have only systematic/factor risks (no idiosyncr)
General APT:

Definition (Asymptotic Arbitrage—AA) {60,}.., Portfs seq s.t.
(1) Self Financed: 1/,6, =0 Note: AA = arbitrage in the limit.
(2) EF [ro,] — a>0 For n finite, portf carries tiny risk
(3) Var? (ro,) — 0 Volatility may not be a sufficient
Prop: NAA —> NA ? measure of risk.

Theorem (General APT)

Given: K-Factors Model for security returns + NAA

= Il eR,A=[A1,..., k] € RF st

n o [a fewvg)] =5 [R f K )12

i T = (T R NB) | =0 | — (T 2o AkBik ) | <A<
NAA = approx. factor pricing: 7; — rf ~ Zle Ak Bik, Vi
Note: So pricing error § # 0 only for small nb of assets: >, 5?<A<oo

(".") 1 Factor: project 7 € R™ on (1,,.3) s ¥ =agl, +a18+ 4
where § € R™, §’1,, = 0 (self-financing portf) and 6’38 = 0 (by L proj.)
Note: 85 = 8’8 =0 = the § portf has NO factor risk.

Take § = bd for some b > 0: also self-financing

= E' [r;] =E" [b6'r] = b3'F = b5’ (aoly + a1B + ) = bd’s = b||5||*
and Var (l‘;) = Var ('[;(5/1‘) =b28'%,6 < b%vs'Ss = /)“)z'Hd\ 2

Fix b=1/[[6]|> = E" [r;] =1 & Var" (r;) <v/[|§]|> -0 = AAl

NAA + Well Div
— Exact factor pricing 7; — rf = Zle Ak Bik, Vi
For large N, Small K:
=—> APT applies to most (not all) securities:
Fo—rl =50 Bun(Fe — ) = 5 AkBin

where §;, = factor loading of asset ¢ on factor k

& A, = 7 — rf = risk premium of factor k mimicking portfolio
= “APT <= SDF model affine in factors: n = a + Fb”
Testing APT & Linear SDF Models:
Idea: Test if E[returns] lie on the SML implied by factor’s E[return]
Data: (usually monthly) T-bill rates & asset + factor returns

Example: (Time-Series Approach)

GOAL: Regress asset’s r, — rf on factors: is a = 0?

Assume: f3; . cst over time — betapores more stable than Basset

e Run times series regression for tradable asset/portfolio i:

Tit — T{ =a; + Ele Bik(Th,t — 7‘{) +ei¢, fort=1---T

e Test if &; = 0 or jointly test if {&;}¥, =0

Example: (Cross-Sectional Approach)

GOAL: Make empirical counterpart to SML: 8 estimates explain 7,7
Geometric Interpretation: Estimate the SML with linear regression
Step 1: estimate 8 for each asset through time-series regression:

LN
K N
= Tt — th =i + D> 1y Bi,kFr,t +ei,t —> save {ai,ﬁi}_ L
i=

Step 2: Use results to run cross-sectional regression:

= L0 (i —r]) BE [n - Tf] =X+ Xy MeBik + i

e Check if A\g = 0 and A\, = E[F} ] if factors=tradable excess returns
e Perfect model + enough data = wu; = 0 Vi and R? = 100%

Note: Works with non-traded factors too: Ao unrestricted

Note: (Practical Considerations) Data = get risk prices Ay
= Charactrz all major sources of syst risk 4+ stock/portf’s exposure
Step 1: Find data on factors: Returns (PCA), Fundam (macro data)
Step 2: Estimate 8 & A: careful! missing factor? 8 = B(t), A = A(¢)?
Property (Fama-French) CAPM can’t explain portf r,, sorted on
simple firm characteristics (recently: momentum)

Beta: Sort returns vs 8 = line too flat (3; = Cov (R;, Rm) /Var (Rm))
Size: Small cap stocks returns > large cap stock returns

BV to Mrkt Ratio: (growth stck) Tiow ratio > Thigh ratio (value stck)
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In Practice

Payoff Space Spanned by Securities:

Ci(D)={c1 =D :0 € RY} =span(Dy,...,Dy)

Complete Market: <= span (D) = RM <= rank(D) =M

< Ver e RM 390 e RN S.T. DO =y

Arrow-Debreu Securities: D*P :=Iyyn (complete market):

— construct using portfolio § = D™ (') DO =1 = DAP

— State Prices: ¢ = (D™ )P

Arbitrage Existence: <= 30 ¢ RN s.t. B0 > 0.

Proposition

Type 1: B = [0,> 0]’ free at t = 0, maybe paid at t = 1

Type 2: B = [> 0,> 0]’ paid at t = 0, maybe paid at t = 1
Market Equilibrium = A arbitrage

(") invest co amount in it = no equilibrium

Warning: A arbitrage =~ Market Equilibrium

State Price Vectors: (consistent with NA) P’ = &'D.

Rank of Di: M = #states, N = #assets, D1 = M X N.

N M
° rank (Dl) < N Incomplete + - Redundant I 1 kD)
= 3 redundant Incomplete + No Redundant
° rank (Dl) < M Incomplete + = Redundant ] LJ
= Im(D1) € RM Incompl Jovsfeen o)
erank (D) =N=M Complete + 3 Redundant
=Complete + A redundant 'nemelee+ dRedundan MeN

) rank(D,)

Complete + No Redundant

Feasible Set of Investor Choices: B(eg, {D1, P})

e Complete, No redund: rank (D;) = M = N
== 0= D71(01 —e1)
= B(e,{D1,P}) = {01 €RM . P'D{ (1 —e1) < eo}.
e Complete & redund: rank (D1) = M < N
= 3D (M x M) full rank & A(M x (N — M)) s.t.
Dy = [Dy, (D1 x A)Y
— (61 +01) = (81 +61) + D19 + D1A9
=>9— (01—61)&9—(AA) 1AD
= B(e ,{Dl,P}) = {cl,cl eRM
'DiY (e —é1) + P/(A’A)TTA' DT
¢ = é1 + DlA(A/A)_lA/f)l_l(él - él)
¢ Incomplete, no redund: rank (D1)=N<M
=> 3Dy (N X N) full rank & D1 ((M — N) X N) s.t.
[D/ D,]/ == 0= ~_1(51 — él)
— B(e,{D1,P}) = {[&,&] € R} :
P'Dy (&1 — &1) < eo;
& =é +DiDNEr — 51)}

Her —é1)

(é1 —é1) < eo;

Optimal Portfolio Choices

Idea: Before: “reduced form” of course.
= Now: build bottom-up micro-founded model

Expected Utility (E.U.) Theory

Preferences:

Idea: How agents use the fin market to best meet their econ needs
Definition (Consumpt® Set) C = {c = [co,¢;]’ € RMTM} C RI+M
Definition (Rational Preference)

]R_li_'"M s.t.

borbd

Binary relat =" over consump C =

Complete: a,b € C = a =
Reflexive: a € C = a =" a
Transitive: a =* b& b =" ¢ = a =" ¢
Axiom (Continuity)VeeC: {a€C :a = c} & {beC : b =
<~ Yan} > a,{bp} >beC:ap=b,=>axb
Axiom (Insatiability) a >b = a = b (more }= less)
Axiom (Convexity) Va,b,c€ C,Va € (0,1):
aZ2b&cb = aa+(l—a)c=b
Prop: Convex = = convex sets of preferred bundles {a € C :
Definition (Utility Function) u: C — R, s.t.
a,beC:a b < u(a) > u(d).
Strictly Monotonic: u(c) > u(c’), Ve = ¢’
Prop: Insatiability = w is strictly 7, v’ >0
Indifference Curve: Plot u on a ¢ vs. ¢o plane
Theorem (Debreu) C C R'*M closed & cnvx, = rational + cont
= = can be represented by a continuous utility function v on C.

=" a or both.

¢} closed

a = c}

Definition (Expected Utility) over a consumption path/lottery
U(C, p) = Ewgg Pwlw (CO: Clw)7 Vee C.
Consumption Lotteries consumption in each state + probas (c, p)

Note: u depends on prob of future states

Upper-Contour Set: Indiff curve separates upper/lower region.
Von Neumann Morgenstern (vINM) utility: wu,,(co, ciw)
Prop: u & u(c,p) are ordinal ; u,, is cardinal!

Prop: u invariant w.r.t. 7 transfos; u, invariant w.r.t.

affine transfos

Axiom (Continuity) V consumption ¢ € C, probas pg, py, Pc:

[e;pa] = [e,pp) = [e;pe] = Fa € (0,1) : [e, pp] ~ [e, (1 — @)pa + apc]
Axiom (Independence) V consumption ¢ € C, a, pa, pp,pe € (0,1):
[Cv pa] = [C7 pb] = [C7 (1 - a)pa + apc] 7 [C, (1 - O‘)pb + apc]
Theorem (vINM, 1944) = on (C,P) has a EU representation

<= = rational + continuous + independent

= u(c,p) = 3, cq Pwtinw(co, Clw)

Assumptions (State Independence) wu(co,ciw) = u(co, C1w)
Assumptions (Time Additivity) u(co,c1w) = u(co) + pu(ciw)
where p € (0,1] is an (optional) time preference/discount coeff

9%y (cg,c10) -0
dcpdcyy

Assumptions (State Indep + Time Add for Exp. Util)

u(c, p) = u(co) + p 3, cq Put(crw) with p € (0, 1)

Definition (Marginal Utility) At consumption level c: u’(c)

Prop: Insatiability = u/(-) > 0 (so u 1)

Assumptions (No Complemnt_ /Substitute_)

Definition (Concave Function)

u(az + (1 — a)z’) > au(z) + (1 — @)u(z)

Prop: u concave & twice differentiable <= '’ <0, v’ \,

Theorem (Concavity) > with Continuity 4+ Indep 4+ Convexity ax:
> can be represented by a discounted expected utility function

u(e,p) = u(co) + p 3, eq Puti(cin) = u() concave

(") Let consumpt® plan (('“A( 1) with ¢ 1w = = (\m( lull(l\ at t =1):

u(co) + pu(ci(co)) =p = o' ((,) + pu’ (e ( ‘n\)‘ (co) =

= u'"(co) + pu (c1(co))c) (c0)? = —pu (<1(<n cf (uJ)

Note: c¢1(co) is LB of convex set in l{“) — (J "(co) > 0 (convex)
Along ray co = c¢1 = c: u”’(c)(1 + pc) ( (¢)?) = —pu’(c)c(c) <0

Risk-Aversion

Definition (Fair Gamble) r.v. z s.t. E[z] =0

Definition (Risk Aversion) Agent with E.U. u(-) is risk-averse

<~ E[u(w+ z)] < E[u(w)] for any E [z] = 0.

Note: RA = Sure Payoff = Risky Payoff w/ Same Mean
Proposition (Concavity of u)Agent (strict) RA< u (strict) concave
() Vwi <ws,p € (0,1): Bern Gamble z={z1,x2} w.p. (p, 1-p)
s.t. z1 = —(1 — p) (u o —wi) and 22 = p(we —wy) = Elz] =0

Let w = pwy + (1 p)wsa: SO w1 = W + 1, W2 = W + T
RA — pu(wi) + (1 — plu(wz) < u(w) = u(pwi + (1 — p)u
u concave J‘;‘ "Eu(w+ z)] < u(w+ Ez]) = u(w)
Measures of Risk Aversion:

Definition (Risk Premium) z fair gamble, agnt w/ EU u, wealth w:
Risk Prem 7 required by agnt to take gamble: E [u(w + z)] = u(w — )
Note: 7 = amount of wealth an agent ok to give up to get rid of risk
Certainty Equivalent: u(wcg) = E [u(w)] Prop' m=E[w] —wce

)5) concave
— RA

) wlweg) =Eu(w)] =uEw-—7m—2z]) =u(w —m)
Definition (Absolute Risk Aversion) A(w) = — 1;,,/((5))
Prop: Small Gamble z: 7 ~ 1A - Var (z)

) Elu(w+ z)] = uw(w) + lzl "(w)E [,1") + o(z?)

=u(w — ) = u(w)-u'(w)T + o(w)
Note: A(w) associated w/ risk premium per unit of absolute risk
Risk Tolerance: T(w) = 1/A(w)
Definition (Relative Risk Aversion) R(w) = —w
Prop: Small Risk wz: g =~ %R - Var (z)
() Elu(w(l+ )] = uw(w(l —7r))
Note: risk premium oc RX size of the risk (as a fract® of wealth)
Theorem (Pratt) Agents 1 & 2 w/ EU u; & us:
Aj(w) > Az(w) Yw = w1 (uy *(+)) concave
< 3f st f>0,f" <0 & ui(w) = fluz(w))
<= m > mo, Yw & fair gambles z

() f(2) =ui(uy ' (2)),

u! (w)
u’ (w)

1

;) =
uqug

f(z) = 2-(2)>0

w = U, P—
- !!7)112
uh (w) .
_ /” z) = —[A1(w) — Az (w)] /“‘ 5 < 0 for Ay > A,
2 3) | Take f(';)fu\(u,L(:))
(3) > (4) |ur(w —m1) =Eui(w+ z)] = E[f(uz(w + x)

= f(uz(w 7“>))

Large gambles: Paper!

[Jensen:

f concave] < f(E [uz(w + z)])

m < A so trivial. L

Small gambles x:

Examples of Risk Aversion:

Definition (CARA) Constant Absolute RA: A’ (w) =0
Definition (IARA/DARA) Incr/Decr Absolute RA: A’(w) 2 0
Definition (CRRA) Constant Relative RA: R'(w) =0
Definition (IRRA/DRRA) Incr/Decr Relative RA: R'(w) =2 0
Example: (Linear EU) u(w) = w

— Risk Neutral agents: A(w) = R(w) =0
Example: (Negative Exponential EU) u(w) = —e
= CARA agents: A(w) = a, R(w) = aw
Example: (Quadratic EU) u(w) =w —0. 5aw ,a>0,wel0,1/a]
= IARA agents: A(w) = =, R(w) =
Example: (Log EU) u(w) = logw

= CRRA agents: A(w) =1/w, R(w) =1
Example: (Power EU) u(w) = ﬁwl”ﬁ y>1

— CRRA agents: A(w) = ~v/w, R(w) =« Prop: v — 1 = Log EU

—a >0

lfaw

1_
Example: (HyperbolicARA EU) u(w) =a+b (d + %) ~

= HARA agents: A(w) = ﬁ, R(w) = d+“1”u/,y , T(w) =d+ %
Prop: Risk Neutral (d = —oc0), Quadr (v = —1),
Neg Exp (y — oo, d = é) Log (d = 0,7 = 1), Power (d =0,v < 1)
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Optimal Consumption/Portfolio Choice

Assumptions (Setting) N non-redund assets, payoff D, price P
Agent: Endowt e = [eg, e}]’, Consumpt plan ¢ = [co, c}]’, Portf 6

EU: u(c) = uo(co) + E[ui(c1)] with uj >0, uy <0 (¢t =0,1)

Inada Condition: lim._,¢u}(c) = oo (no need to assume c > 0)
Proposition (Agent’s Optimization Pb) maxg uo(co) + E [ul(cl)]

[P'6 = ep — co=time-0 savings] s.t. co = eg —
c1 =e1 + DG

Theorem (Existence of Optimal Portf) Agent Optimization Pb:
J solution <= No Arb in market {D, P}

If 3Arb: agent can achieve unbounded consumpt® levels.
If AArb: 3¢ > 0s.t. P/ = ¢'D
Consumption financed by 0 is [—P’6, (D6)']’
Agent’s Budget: B(e) = {w >0:c=e+[—-¢'DO,(DO)],0 € H}
Use: B(() = {(‘ >0:c=ec+[-¢'d,d],de Ii\/} (with N < M)

Note: B(e) = {« € Be):d= IJH} C B(e), B(e) = B(e) & M = N

Now: B(e) bdd for ¢ > 0 = B(e) bdd + closed = B(e) compact
u, ug, w; continuous over compact B(e) =—> max exists

Special Case: Complete Markets:

Assumptions

Complete set of AD securities, State Price ¢ > 0

Agent: endowement e = [eo, e}]’, wealth w = eq + ¢'e1

Budget: B(e) = {c:co+ ¢'c1 = w} (Simplify: ignore ¢ > 0)

Marginal cost = ¢.,: Additional $1 in asset w = c1, " by 1/¢u
max

uo(co) + X, Pwt1(ciw)
co+o¢’ci=w

Lagrang: £ = uo(co) + 2, Puti(Ciw) — A [co + ¢'cy — w] — Ocgs Ocy
FOC: A = u((cop) — marginal value of wealth

Abw = Puw Ih (c1w) = 81:15575:1)]

Note: At optim: relative marg utils for consumpt®
dates/states = their relative prices

’
N = Lo — "1<Clu) intertemp marg rate $w _ _Pwu](c1y)
« Pw ug(co) of substitution ’ $_; PG

Proposition (Optimization)

— margin benefit of 7 ¢1,, = 0, D14,
in diff

Proposition wu; strictly concave
/ . 7— .
= strictly \( & u} ~ exists

Theorem (Optimal Portfolio Choice) Solve FOC:

r—1

co=1uy (A) and c1, = u'l_l )\i—:’) Yw € Q

where X solves budget constraint: w = eg + ¢'e1 = co(\) + ¢’'c1(N)

TheoremComplete Market agnts w/ insatiable + strictly concave EU:

Clw < Cyyy o (for all w,w’ € Q, Vk)
Note: At optimum: levelb of consumption in diff states are ranked

inversely by SPD n — High pain 7, = Low consumpt® ¢

General Equilibrium: Lucas Tree Model (1978):

Assumptions Agents w/ identical prefs + endowments

e Complete Market: agents can freely trade resources over time/states
o Market Clearing: aggreg consumpt® >, cx = >, ex aggreg endow

PROBLEM: Find Equilibrium State Prices + Risk-Free Rate
whlerw) _ wiC1w) _ b _
uf(co) ehleg)  pw
Note: Denom known = randomness in 71, depends on u/(clw)
u'(c1w) \« W/ ciw so: High Pain = High Marg Util = Low ci, = e1q
Example: (Special Case) e, = e1 & ui(c) = dug(c) =: du(c)
dul(e1y) _ 1
u’(cq) C Tl
<= c1 > co (ppl prefer to smooth consumption out)

Prop: FOC + Market Clearing —

= constant SPD 7, =
So: 14+ 7f > %
Note: cst aggregate consumption =— 1+ rf = 1/6

No uncertainty: high growth + abundant resources = interest rates<%

Example (CRRA) e1w =1 + €w, Ele,] = 0:
u(e) = §— = u'(c) =c" = u'(c) =
= u’”(c) =~(1+~)c" 772 > 0 so convex marginal util u’
Jensen —E [,,7 ] [Ju (Clw)] 5“,(]]3[01(.;]) 5“,(51)

= 1+rf “ "(co) 1 = ul(co) u’(cq)
Precautionary Savings Effect: Possibility of high marg util states
in future makes agnt want to save more.

= Pushes RF bond price * and the 7/ N
Characterization of Optimal Portfolio:
Proposition (Optimization) Use Budget Constraint for cg, c1
= maxg uo(eo — P'0) + E[u1(e1 + D0)]
= maxg ug(eo — P'0) + >, puu1 (elw + N 9nD1wn>

Definition (Euler Eqn) FOC: uj(co)Pn = E [uj(c1)Dn], n=1..N
At optimum: MU (t=0 consumpt loss: paid P, to invest in 1 asset n) =
MU(t=1 consumpt gain: receive payoff D,, from investment in asset n)
’ ’
. _ “1(01)% . “1(01)
OR:1=E [“6(00) 72| =E u{,(@o)R"
MU (invest in traded assets)/MU (consuming today) = 1 Vn
Note: FOC does not guarantee optimality: need SOC!
Definition (SOC) Optimality obtained if, in addition to FOC:
ug (co)P2 +E [u'll(q)Di] <0,n=1,...,N
Prop: ui, us concave = SOC holds

,76—7—1

Proposition (Portfolio Decomposition)
Agent’s t = 0 savings: w = eg — cg = P’0
—> Optimal consumpt/portf choice: max,, {ug(eg — w) + v1(w)}

v function: vi(w) = max _EJ[ui(e; + DO)]
{6:P 0=w}

Note: v =portf choice problem given total amount to invest =w

Example: (Special Case) e; = 0 (agent endowed only with eg cash)
= Portf Choice Pb: v(w) = max E[u;(D8)]
{0:P 0=w}

Riskless asset: asset N with gross return R,, =1+ rl

an = 0, Py $ invested in asset n = w =Y, an total investment
Portf payoff: w = DO = 25:1 an Ry, = w(l +rf +Zn 1 an(rn —rf)
Excess Return of asset n: 7, — r

Theorem (General Pb)

r=[r1,...,rn—1) returns on risky assets;

a=[ai,...,an—1] investments in risky assets;

—> Optimal Portfolio Pb:

maxg B [u(@)] = max, E [u (w(l +rf)+ (r— rfL')a)]

— FOC: E{ "(@)(rn —7f)] =0Vn=1.N-1

— Solution = a(w) € RN ~1

Note: FOC: marg cost of investing in n

=E [v/(@)rn] = E [u’(ﬁ))rf] =marg cost of losing 7/

Properties of Optimal Portfolio:

Case 1: Assume only ONE risky asset:

Prop: @ = w(l +r') +a(r —rf)

(*.") borrow at RF rate,
Proposition (Opt Investment a) Agent =
a>0 < 7>rf ; a<0 = F<rf
a=0 <<= r=r

() a(a) =Eu(w)] =E [u,(ku'(l +rH) +a(r—rf ))}

i (a) =E [u”(z?')(/'

invest in risky asset

strictly RA

F\2
r )’} < 0 as u concave

=— at max: 0 =@'(a) = E [u'(}z?‘)(r —rf )}
a'(0) = u(w(1l + rf)) - (7 — rfy — sign(r — r¥)
a<0 <= @(0)<0 = r<rf

Prop: risk-premium> 0 = agent invest at least ¢ in risky asset

dE[w] _ - f
da 7

(r) /" with a

) ("11‘(1110(‘ a =0 to a=c¢e small: indep of a

dVar(w) _ (a®Var ( (r)) = 2aVar

da r/(!

Proposition (Abs RA) Assume 7 — 7/ > 0 (so a > 0)
a’(w) >0 A'(w) <0 (DARA) ; a'(w) =0 < A'(w) = 0 (CARA)
a'(w) <0< A'(w) >0 (IARA — very rare)

(") Consider DARA: A’(w) < 0. FOC: E [u/((ﬂ)(r r")} =0

11~

— ﬁ and algebra: use v’/ < 0, a > 0, A(®) = — “MEI“)"
. E[u (@) (r—rf)
Prop: You see from FOC diff: % =—(1+ rf) [ }

E[u’/ (@) (r—rf)?]
Definition (Relative Propensity) for investor in risky asset:
e(w) = ¢ 45

= CST fract® of wealth

Proposition (Rel RA) Assume 7 — 7 > 0 (so a > 0)
e(w) > 1< R'(w) <0 (DRRA) ; e(w) = 1 & R'(w) =0 (CRRA)
e(w) <14 R'(w) >0 (IRRA — very rare)
w(1+rf) E o'’ (@) (r—r] }

[ (D) (r—r ‘-,,
[R(@)(—u/ (0)(r—rF)]

E[u'’ (@) (r—rf)2]

Note: e(w) = 1 & a(w) = @ - w: risky invest™

liff — e(w) = wda — _

a du a
N [11//!‘!]‘!!‘177/!: a1
a ',[H//’:U\Hyfflﬂ/v\,\zJ o a
Case 2: Assume MULTIPLE risky assets:
Prop: @ = w(l + ') + (r —rf)
Theorem (Opt Investment a) a=0<E[r,]=rf vn=1.N -1
() =: Use FOC

() FOC «

= e(w) —1=—

<: risk prem = 0 for all risky assets
— E[w] =w(l+ rf) — payoff from a=0 portf
Jensen: E [u(w)] < w(E[@]) = uw(w(l 4+ r')) for all a = a =0 opt

Theorem (Opt Investment a II) Some risk-prem on risky assets7#0
= Elrporer] > ¥ (e, SN an@lra] —rf) > 0)
w(E[@]) > E Vu(u J > u(w(l+7r")) = E[@] > wl+rf)

(".") Jensen:

= T an(Elra]
Stochastic Dominance

Idea: 2 key elements to rank portfs: E[return] & risk — tradeoff!
Use: partial order (returns props let agnts rank 2 portfs, indep of prefs)
Let ra,7p = returns of assets A & B

First Order Stochastic Dominance:(dominance in return distrib)
Definition (FSD) A dominates B in the FSD sense:

AZrsp B <= VYu' >0:E[u(ra)] > E[u(rg)]

Note: u(r) =u(w(l+r))

Prop: A Zpsp B = 74 > Fp but converse FALSE!

Theorem Fyu,Fp CDFsof Ry & Rp:
A ZFSD B <— FA(:E) < FB(z) VY
<~ T‘AE’I’B+€,With€ZO

(") use IPP + recall E [u(R)] = [”I’
Theorem (Ordering) A Zrsp B = : for v/ > 0,u” <0

max, E [u(w(l +rf)+a(ra — rf))] >max, E [u(w(l +rf)y +a(rs — ’I"f))]
(1 + )+ a(r; — 7))

(a,r4) > f(aB, 1“,4 ) > max, f(a,rB)

u(z)dF(z)

and

(")) Let f(a,r;) :=E [u(u
ap = argmax, f(a,rp): maxg ]

Second Order Stochastic Dominance:(dominance in risk)
Definition (SSD) A dominates B in the SSD sense:

AZssp B < Vu'’ <0: E[u(Ra)] > E[u(RpB)]

Prop: ONLY WORKS IF Ry = Rp !

Prop: A Zssp B = Var(R4) < Var (Rp) but converse FALSE!
Theorem (Rothschild-Stiglitz) A Zssp B

<= E[Ra] =E[Rp] and [Y[Fa(z) — Fp(z)]dz =: S(y) < 0 Vy
<= Ra i Rp + &, with ]E[E‘RB] =0

Prop: Ry~ Niu,o4), fip ~ Nlu,oh): 74 <05 = A Zssn B
()Re $Ra+e=e~N(0,05 —0%) 1L B=E[g|Ra] =0
Note: Var (Ra) < Var (Rp) == A 2ssp B: try utility that has
small P of black swan
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Mutual-Fund Separation Thms

Idea: Characterize Opt Portfs:
(1) Return Distributions

Assumptions (Setup)
: weight of portf a in asset n (n = 1..N)

wnz—w

= [z1,..

an

L zn] e RY with Jz =1

Note: x defines a portf with gross return R, = Rx

Explore restrictions on
(2) Agent’s Utility Function

(3) Both

Proposition (Optimal Portf Pb) v =util funct® over returns
max

{or/s=1}

E fu(w)] =

max
{wia/am

E[u(wRx)] =
}[( )]

{winfam

max
lr=1

E [v(Rz
}[( )l

Definition (F-Fund Separation) The set of optimal portfs of
different agents lie in a FF — 1 < N — 1 dimens affine subspace of RN
X p= the F — 1 dimensional subspace
z,€ RV = agent k’s opt portf (k=1..K)
zp;€ R= F indep portfs/funds in Xp (i = 1..F)
F funds are called the separating funds or mutual funds

Prop: F-Fund separation =— x) = Zf;l hrixp; with Zf;l

Every agent’s opt portf = lin comb of the F' funds

Note: If 3 a RF asset:

hki =1

it’s often € F funds — Monetary Separat®

—> Remaining F' — 1 funds consist of only risky assets
Theorem (Ross - 2 Fund Sep)
Suppose: 3 RF asset w/ gross return RY (call it asset N).

2 Funds Separation holds for any insatiable & concave util funct®
3F, Bn,Tn,n =1..N — 1 s.t.

<= returns on risky assets satisfy:

(1) Ry =R + BnF +en

(2) Efen|F] =0

(3) 0

Tnen = 0 where ZN Lz, =1

Note: RF security = a separating fund

Note: Returns of risky assets have a 1-factor structure

Note: 3 a portf of only risky assets (w/ x,,

n € {1.N

=weight

in risky asset

— 1}) s.t. idiosyncratic risks are fully eliminated

portf with only factor risk 2ssp portf w/ factor + idiosyncr risk

Theorem (Preferences & Mutual-Fund Separation)
Assume: arbitrary return distrib & «’ > 0,4’ < 0
1-Fund Sep holds <= all agents have the same util funct® over
returns (up to affine transfos)

Note:

1-Fund Sep is STRONG: need ~ identical prefs!

Example: (Homothetic CRRA) w(wRz) = w'™" - u(Rx)
E [u(Rz)]
Note: opt portf  indep of wealth level: can allow for heterogen in w

—> argmaxg E [u(wRz)] = argmax,

() = argmaxg E [u(wRz)] = argmax, w’

"E [u(

Rx)]

Theorem (Cass-Stiglitz) 2-Fund monetary sep holds

— up(w) = (dk + %)7
with dj, > 0 and v > —1 same for all agents

"> 0 for every agent k

Mean-Variance Portfolio Theory

Idea: To characterize optimal portfolios, impose restriction on:
Preferences (U) and/or Returns distribution

Here: focus on case where preferences over portfolio return is a
function of mean + variance (i.e., suff stats for returns distrib)

Mean-Variance Preference:

Definition (Portfolio Choice Pb) max
where: a = portf welghts W = total wealth
Prop: E [u(®)] =3, =& w™ (E [@]) - E [(@ —

a:i’ a=

E[@])"]

1 E [u(@)]

Idea: Focus on E.U. that depends on E [w] & Var (w)

Definition (Mean-Variance Preferences)
E [u(®)] = v (E[@], Var (@) = v(w, 03,)
Definition (Quadratic Utility) u(w) =w — aw

Prop: u(-) quadratic = E [u(w)] = v(w o2

() E[u(w) ]7T1[1 - %uu

Prop:

()

o)
() w
2)
9%

=1

v

Doy

aw >0,

LY = —a<0,

"o —
ow= [é

=W — —)nu'

2
folnkl)

dwdoy

aoy,

=0

w

— :aa

v AW, N\ 0, and is concave in @ & o,
<0,

,a>0,w<1/a

Proposition (Jointly Normal Returns) D jointly normal
= w=D0~ N(w,ou)

= mean-variance preferences: E [u(w)] = v(w,02)

(") W= 1w+ owe, where e ~ N(O,

Prop: v(w,aw) = IE[ ()], v > (],u "< 0: v S, N\ 04 + concave
) (()):v =K ['u'(z?r + owe )}

‘,‘:1‘1 =E [u' (w0 + owe)e] <E [u (u Je|] =0,

and (‘;;‘2 =E ['H”('IT' + o’ws)} <0, ﬁé. =K [11’(!7' + o

Proposition (279 Order Approx)

Risk Premium 7: E [u(@)] = E [u(@ + €)] = u(w — 7) with e = @ —
w(@)] 2

[_ u’ () ] Tw

— For small gambles: mean-variance prefs approximate any u(w)

w

Small risk = 7(w,02%) ~

Mean-Variance Frontier Portfolios:

Idea: (2-Step Approach)

(1) Minimize Var (@) as a function of the a target E[portf return] 7,
— Find set of mean-variance frontier portfs

(2) Pick portf 7, that maximizes u ()

Assumptions (Setup) 7 = [r1,...,rn] € RN asset returns with:

mean 7 = E [r] & covariance matrix S =E [(r — 7)'(r — 7)] € RN*N
z=[z1,...,ZN] € RN portf weights: r, = r'z, 7, = ¥z, oi =2’
Terminal Wealth: @ = w(l+r,), E[@] = w(l + 7,), Var (¥) = w?o2
Agents prefer portfs w/ higher E [r,] & lower 2.

Definition (Mean-Variance Frontier Portf — MVF) mzin 12’ S

st. Fla=7, &z =1
Proposition (Trick) ‘z, 'Yz =2/ (T + %) =22'S
Assumptions (Addltlonal) Only risky assets + No redundancy
= ¥ full rank & 327!
Theorem (MVF Solution) £ = 3a2'Saz+ A1 (Fp — 7'z) + A2(1 — )
FOC: 'S = M\ 7 + Aot/ with 7z = 7y & Jr=1

121;—

= = MX"'F 4+ X221 (plug-in constraints to get A’s)
Define: z; := ﬁE_IL & o 1= ﬁﬁ_lf Prop: (/z12 =1
. . o ,/2—1 o 42—17
= 2 frontier portfs with E[returns] 71 = r’zflf & T2 = ’;,271;

= z=Xz2+ (1 — Nz
= 7 = A2+ (1= N with A = 222
Vary 7, to draw the Mean-Variance Frontier — only boundary!

e Any MVP generated by mixing 2 MVF portfs: z1 & x2
e MVF generated by mixing any 2 MVF portfs

e Portfs of MVFs is an MVF Portf

e The set of MVF Portfs = line in RV

(") Set of portfs: X = {,Ir ERN V= 'l} e RNV-!

Set of MVF portfs: Xy ve C
MVF Portfolio Properties:

X and 1,22 € Xyvp = line in RY

'am

Definition (Minimum Variance Portfolio — MVP) By = 0

Prop: Necessary & suff: 2/, pS(z2 — 1) =0

942 2
0 L)ﬁl’ /)(TI) )

= 9rp ~ Oa

Ox

orp

ayyvp =x1 () 2) S(es

)
Prop:

= 2,’1"2(,1;3 —x1) -
z1) =

To—1T1

ﬁ/,/(,zrg 1) =0

Prop: MVF = Hyperbola in 7 — o plane

)

o2
Tp=T1+AX(T2 —T1) =71 £ 71

Var(rg —11)

Tp =

z1 + AN(z2 — 1), and o’,, = \/rrf + A2Var (ro — 1) so:
(T2 —71)
Theorem V Portf p: Cov (rp, rmrvp) = oagyp

(".') New Portf a: r, = ary + (1 a)ryv p so by MVP
0 = argmin, Var (ro) = %\';11' (ra)=0at =0

0= m‘(\7(7 [(1 a)Cov (rp, Tarv ,>)}

def:

@)?oiyp + a?Var (1) + 2a(1

>
= 0= —0o3vp+ Cov(rp,rmvp)

Note: Can also say that o’wise, we would get 04 < oy p:

Var (7o) = o3y p + 2aCov (rp — rarv e, rmve) + o Var (r, — rarve)

~ U?VIVP +2aCov (r, —ryvp,Tmve) soif Cov 2 0: take a S0 ] o4

Prop: MVP always dominated by other MVF portfs (unless U is

vertical — oo Risk Aversion)

Definition (Zero-Covariance Portf — ZCP) Given MVF portf p:

Portf ZCP s.t. Cov (rzcp,rp) = 0 for that p # MV P

Theorem (ZCP 3) If MVF p # MV P, 3 ZCP: Cov (rzcp,rp) =0
2

. I

Note: rzcp :=71p + a(rymyvp — rp) with a = - P702
) MVPTT _)
() Cov (rp, rzcp)=o, + aCov (rp, rmMve — 7'1)j:(r; + (\((f}n»rﬁ(f;)

Theorem (Towards Zero-Beta CAPM) Given MVP p w/ its ZCP:
Cov(rg,r
Y portf q: 7y — Fzop = Bep(Fp — Fzop), where Bgp = ov(rq,7p)

(") Let MVF Portf ¢

7p

with same return as g:

Tq = Tgx + ru with E[r,] =0, Cov (ry,rp) = Cov (1w, rpmve) =0
> Jas.t. rgx =rz0p + a(rpy —TZ0P)
== Tq = 71 =Tzcp + a(fp — Tzcp) (s0 Bgp := a) and
2
Cov (rq,rp) = Cov (rq — ru,rp) = Cov ("4(“ K r'l,) = ao,

Theorem (Geometry of ZCP)

Any MVF Portf ¢ satisfies:

rq =71p+alr, —rzcp)

= Tq=Tp+ Oc(’l_‘p — cmp)

aﬁ:o’i+2aoi+a2Var (rp —rzcp)

—> Tangent at p: Intercept=7zcp
Tp—T

& Slope = -2—2CFP UZCP o

Connection with the SPD:

Prop: (m —m™) L payoffs, so E[(m —
Prop: At ¢t = 0: m™ price Py(m

Assumptions NA = 3 SPD m > 0 (or 7)

Definition m™ = projection of m on linear space of payoffs
m™) - payoff] = 0

)=E[m-m*]=E [(m*)z]
) E[mm*]=E[(m* + (m — m*))m*]=E [(m*)*|+E [(m — m*) -

m™]

5

. tf m*: . _m* _ _ m*
Prop: Return on portf m™: 14 r* := Po(m™) = E[(m™)2]
Proposition (SDF Prices All Assets) E[m”™ - payoff] =0
Note: Also, E[r" - payoff] = 0 (as r" o« m™ o m)
() TBD
Proposition (Efficiency of m™) Portf m* is on MVF
(") Decompose r* = m
rt=rp + r, with E[r,] = 0, Cov (7 w,Tp) = Cov (ru,ramrvp) =0
Notice: E[rpry] = Cov (rp, 7y) + E[ry JE[I“J =0+4+E[r,]-0=0
= E[r'ry] =E[rpry] +E [ ” =0+402
Also: E [r*r,] =0 as r*ocm™ocm and m prices all portfs: E[r,m] =0
= rJ'i =0 = r, =0 = 7" =r, som” is on the MVF

Proposition (MVF Location of m™)

m™* minimizes E ['rﬁ] = og + fﬁ among all MVF portfs

(") For any MVF portf p: r, = 1" + a(rp —rzcp)

— E [ ,} =E[(r*)?] + a®E [(rp — rzcp)?] + 20E [ (rp — rz0p)]
where E [r*(r, — rzcp)] = 0 as SDF prices all payoffs

— E {,,} > E[(r)?] for all p € MVF

Riskless Asset:

Assumptions N risky assets, 1 RF asset (rate r¥)

e Excess return on risky assets: r® =r — rfu

e Portf weights on risky assets: z, on RF asset: 1 — ¢z

e Terminal Wealth: © = w [(1 + rf) + z’re]

Definition (MVF Portfolio) Expected Excess Return 7,

T, = argming 'Sz s.t. 7z = 7y Note: 7° € RY but 7y €R
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Theorem (MVF Solution) £ = 1z'Sz + ATy — a'7)

7€
FOC: 'Y = A7° with T, = ' = xp = ,77:”2_1?&
re' s—1lpe
Vary 7,
Note: 7, =0 = 2, = 0so all in RF

’
e/ y—1ze

to get the MVF in presence of RF asset

o= 7 = 'z, = 1 so all in risky = Tangency Portf
P re'm—1,
re w1, e

. . . ’
In general: total weight in risky asset a, :=t'z, = ey e 9

Definition (Tangency Portf) All in risky asset:

@ = —=2—— %717 Prop: For all p € MVF: a, = b Tp = apxTT

el -1, i 5
Also we get a line: r, = rf 4+ w(ry — rf)
Any MVF portf = mix of Tangent portf & RF asset
/e

Definition (Sharpe Ratio) Given Portf z: SR := —&=

NEGSE
Prop: Among all portfs of risky assets only: Tngt portf has max SR

() FOC to max SR: =z = \‘//\‘V lpe — =1 = r = Tngt
Theorem Let p € MVF, then for all portf g:
_ _ Cov(rp rq)
Tq — rf = Bap(Tp — 1 ): Bap = ez
P
) zp = 15
i ('u\r//,./',‘,}*%/' > ‘xvl,“‘*%/;

If p=gq: o —2

:r-!».((r?_r,)

1
:q .pl(a\/(v‘,fhrr) 1»,(15:1

d o )
&Ko .:, _Il w* w ) T ,’
v r e r"‘
— ( B
= o - (
> RS % =Sk Tpof = P = o (Go1y 1)
Gov (-1 ) s ————EPL

Note:
e Under mean variance prefs: 2-fund separation holds.
e The optimal portfolios of all agents have a very simple structure.

Portfolio efficiency: basic intuition
@ Recall the first order condition for the tangency portfolio:
0=2"5 - xr
@ Rearranging, this implies that
1 10(1/227 5x)
=7 —rp=~Crjrp) = T —F——
) P
» LHS is the marginal benefit (increase in expected return) associated with
borrowing at r# to increase the weight in asset j
» RHS is the corresponding marginal cost (increase in variance). A\ is the
shadow cost (in terms of variance) of a marginal increase in expected returns.
» An efficient portfolio will equate the two across all risky assets.
@ Ifan u:.~.(l earns xhigh risk pmnium it llllhl be the case the xl a marginal

(i.e., it h\s a hu.,hn cov; 1ce \\|th llu tangency pml(nlm) relative to

another asset with a lower risk premium.

In Practice

Consumption Choice Problem 1:

Setup: M =2 states, N=2 assets (1 RF + 1 risky)

t=1 returns: R= |} Z:|, probs: m,, 7q4.
Agent: initial wealth wq, final w; = 0.
Portf Weights (RF/Risky asset): a = [a1, az]’
Max Prob: max logco + BE [logc1]

cp,c] e

2 Budget Constraints: ¢; = (wg — co)Ra
(a) Find optimal o = a(wq, cg,c1):

Complete Market: IR™! = o = wO_COR L.
(b) Rewrite Constraints Using Only (wo,co,cl):

¢ =P'R™" with P = [1,1]’ so n, = 2%, 14 = %
= Constraint: wo := co + E[nc1] = co + munuci,u + manaci,a
(c) Optimize over (cg,c1) 4+ Find co(A), c1(A):

max log co + BE [log c1] s.t. wo = co + TuNuCl,u + TaNac1,d
c0se1
L =1logco + BE[logeci] — A(co + TuNuci,u + Tanac1,da — wo)
SO XN=1/co ; L Amsns = Bms/c1,s with s = u,d

—— c():% Clv“:7/\5u = C’,?f C1,d =
(d) Plug X in constraint + Get A = A\(wp):

Ang T ng

1 LY
wo = co + TuNuCl,u + Tanac1,a = + + 248 + 748

— )\ = 15

wo
(e) Get co(wo), c1(wo):
co=15  clu=tiEne L= TiEae

Consumption Choice Problem 2:

Setup: 1 RF (return rf) + 1 Risky asset:

r=7+0e e~N(@,1) (F>rf)

Agent: eg > 0 and e; = he (h > 0)

Maximize: max —e” “°0 — pE [eiacl], a > 0 cst
co-c1

(a) Invest a in risky asset:

Write t = 1 consumption c¢; = c1(eg, €1, co, a, rf,r)

ca=er+wl+rf)+alr—rf)=e 4+ (e0 — co)A + ) +alr — )
(b) Write optimal portf choice problem:

max —e~ “°0 — pE |:e_a(
cp,a

€1+(ﬂ0—60)(1+rf)+a(r—rf))}

(c) Write FOC: &

(d) Solve FOC for Opt Portf Choice problem: Get a, cg

(e) How does h influences cg and a?

co N\ in h. Higher uncertainty about e; == lower certainty
equivalent of this payoff. When h is high: agent feels poorer = wants
to consume less.

a N in h. Higher uncertainty about e; == less willingness to invest
in the risky asset (adds risk to c1).

Consumption Choice Problem 3:

Setup: 1 RF (asset 0) +N risky assets: n =1,.., N

Returns: Ro = Rf =1 and D,, = D+ ¢, (n=1..N), en, < N(0,0)
Prices: Pp =1, P, = P for all n

Agent: CARA u(w) = —e *", a >0

Endowment: 1 share of each asset n, 0 shares of RF.

Portfolio holdings of risky assets: § = [01,...,0n]" € RN

(a) Write agent’s wealth W at t = 1:

~ N 1 N

w = Zn:l OnDnp +P70( n=1 Pr _En— QWPVL )

Asset n t=0 wealth
Payoff (endowment)

(b) Write Optimal Portf Choice Pb:

wealth invested
in risky assets

meax]E [—eiad)] s.t. W= Zn 1 600Dy + Z (1 =0,)P,

D, * N(D, o?)

= @~ N (SN_y 00D+ $5_ (1= 00) Py 0 S0, 62)

= —aib ~ N (_azn=1 0D —aXN_ (1= 0,)Pp, 0202 SN 92)
E [76_(1@]:76)(;) (70, ZN71 0,.D, — aZN,I(l —0,)P, + ’170'2 >
- maxZQ Dn+Z 1—9,L)Pn—ga'220

(c) Solve Optlmal Pgr_tf Pb: FOC w.r.t. 9

D-P,—ac%0, =0 = 0, = 2=Ln

ao
(d) Show: for different values of RA a, 2-Fund Separation Holds:

N 2
n= 10n

Initial Wealth of Agents: wo = > N_, P,
- agents invest optimally fractions

97;& = % of wealth in asset n
0 @ wpo?
and 1 — E% in RF asset
woo
—> agents hold lin comb of RF asset -
and risky portf xp = [z1,...,2N] (T = (D%ZQ)P")
Depending on RA: Hold %XM in risky & 1 — %X;wb in RF
(e) If agent = only agent in market
Find Equilibrium Risky Prices P,
Market Clearing: 1 = 6,, = LI;" = P, =D —ao?
(f) Find Risk Premlum on Rlsky Assets —|— N — oo Limit:
Tn=Rn— R =E[R,] —1="2Dnl 1= _ 2 indep of N

(g) Does APT Hold in this Market when N — 00?
3 Asymptotic Arbitrage in this Market: (so APT can’t hold)
Seq of arb portfs: 9(1)\1 = -1, 07]:] = % vn

SN 1la | _F _1=m = _ad?
N] = ne1 N T 1=7r l=m = Doao? >0

While Var (r,n) = ﬁzl L

- ]E[rs

Var (e,) = % -0
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Static Equilibrium Models of Asset Pricing

Market Equilibrium

Invest - Transfer money:

e Deposit accounts

o Mortgages
The Capital Asset Pricing Model (CAPM)
The Consumption-based CAPM (C-CAPM)
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Asymmetric Information

Dynamic Modelling

Financial Markets: Grossman-Stiglitz Model

Invest - Transfer money:
o Deposit accounts
o Mortgages
No-Trade Theorem
Rational Expectation/Market Efficiency

Market Microstructure: Kyle & Glosten-Milgrom
Models

Dynamic State-Space Framework, FTAP

Invest - Transfer money:

o Deposit accounts

o Mortgages

Arbitrage Asset Pricing (Dynamic)

Dynamic Portfolio Choices
Dynamic Equilibrium Models:
kets, CCAPM

Dynamic Equilibrium Models:
kets

Complete Mar-

Incomplete Mar-
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