Fundamental Theory of Asset Pricing

X ~ N(p,0%): Mx(t) =E [e_tx] = exp (ut + %02t2)
x(t) =E [e_ Tl tiX ] =exp (t'p+ Lt'St), with t € R™.

Arrow-Debreu State-Space Framework

t =1 State Space: Q = {w1,...,wpm} = M states

K Agents k=1,2,...,K N Assetsn=1,2,...,N
Endowment: e¥ : e’g, elfl] =lek, ek, . .. ek e RITM
Consump Plan: c¥ := [cF, k') = [ch ek, eyl e RIPM

Consump. Set: C := {cX : feas.} C R'*M; Usual: C = R}ﬁM

Prop: C is a closed + convex subset of RITM

Budget Set: Set of consumption plans given by purchasing 6:
B(e,{D1,P}) :={c>0:0 c RN ck =ey — P'0,cF = e, + D16}
Complete, No redund: rank (D;) = M =N = 0=D"1(c; —e1)
= B(e,{D1,P}) ={c1 €RY : P'D{'(c1 —e1) < eo}

Payoff Vector: Dy, = [D11,..., DlM] € RM | Dy, at t = 1 state w.
Market Structure: Dy = [Di1,...,D1in] = [Diwn]MxN € RMXN
Price: P, € R: price of security n at t = 0.

Price Vector: P =[Pi,...,Py]' € RN at t = 0.

Portfolio: 6 = [0, ...
B Matrix: B:= [-P’, D]’ ¢ RIMHTDXN,

Prop: c=e¢+ B0 = leo — P, lerm + Z",] nlmen](wm]
Market Clearing: ZkK,I 0% (P,e*) =0 i.e. Zk:l ek = Zszl ek,

Arbitrage

Redundant Security: 360\, s.t. D\n0\, = Dp

Prop: rank (D;) < N=redundant; rank (D1) < M=Incompl
(Im(D1) € RM); rank (D1) = N = M= Compl + no redund
Payoff Space:

C1(D1) :={c1 = D16 € RM™ : 9 ¢ RV} = span(D1,...,Dn) CRM
Complete Market: rank (D) = M (need N = M)

AD Securities: DAP := Inxn (complete market):

—s construct using portfolio § = D™ (-7) DO =1 = DAP

State Prices: ¢ = (D
Arbitrage Existence:

~1YP, P' = &'D; ¢, = price of e, at t = 0.
— 9 RN st. B >0« >0
ex: CIP Formula Forward contract price: F = Se_,g X 11:2

Fundamental Thm of Asset Pricing (FTAP)
Valuation Op: V positive Linear Operator

Theorem (FTAP) NA <= 3¢ > 0s.t. P’ =¢'D (P = D’¢)
Note: If rank (D) = N, then D’D full rank: P’ = ¢'D’D.

— 0* = (D'D)"'P, ¢* = D(D'D)"'P and n* = ¢*Diag (p) "
Note: Redund asset = ¢ not unique. If A¢ >0 — J arb
Example: (Incomplete Market) D = (1,2,3)', P =1:

= &={¢>0:¢'D=1} ={¢ > 0: ¢1 +2¢2 + 3¢5 = 1}.
Price D2 = (2,2,2)/ : P2

Example: (Incomplete Market II) Find price P, of new security
with payoff b s.t. b ¢ span (D1) (i.e., not redundant):

Po={¢b:¢p>0,P =¢'D;}ie., inf ¢'b< P, < su b
y = {¢pb: ¢'D1} ¢e¢>>0¢ () ¢€¢I>>>O¢
If Security b is redundant: P, = {P6:0 € R™, D10 = b} = ¢'b.

State-Price Density /Risk Neutral Measure
Risk-Neutral Pricing:

1. P/ = ¢'D = get state prices ¢.
2. Get RF rate: 1+rf = 1
Zw Pw

3. Construct Q = {qw =% ¢ - = =(1 +rf)¢w}.
4. Price any asset with payoff vector D,

— E9Dy) _ >
Pr = 1+ T 14T 4o D
fVE [Dn]
5. Get Expected Return: 1 +7, = (1+r )EQ[D”] .

,0n] € RV = costi—o = —P’6, payoff,_, = D:9.

SDF/SPD P, = ¢/Dn = E¢anw = Epw%an
Proposition (P~ Q) B [X] = 1B [X] & ¢, =
SPD/SDF Pricing: you must know P = {po}:

1. P/ = ¢'D = get state prices ¢.

2. Get SPD/SDF: n = %j.

3. Price any asset with payoff vector D,,:

Py =EF [nDy] = 3, Pl Dnw

4. Get Expected Return: 1+ 7, =
5. Get RF rate: 1+ 1/ = H‘T%[n]
Discounted Cash Flow (DCF)/Present Value (PV) Formula:
Discount Rate/Expected Rate of Return:

q _
1+‘:f = PwNw

E'(Dyn] _ EP[Dn]
Pn EF[nDp]’

5 — E[Dn] _ EF[Dn] _ EF[Dy] _ E9Dp/n]
Lt 7n = 5 = gpppny = (147 )EX[DZ1 = "R,
Gross Return: R;y; = %ﬁft{t;) = % = DtTtPt
Net Ret: ry =1+ R¢;. Random 7, : 7o = DPT:L“’ -1
Note: 71, = v/, E¥ [f,] = 7, and 1 4 7, = g;;
Excess Ret: = ry — rf. Risk Prem: T = E" [Fn — Tf} =Ty — rf.
o ]E[Tt_Tf] __ E[return]
Sharpe: SRy = Std(re—r/) ~ Unit Risk"
EP[D D
Prop: (DCF/PV) P, = 51Pnl = ZaupeDnw _ 4'p,
_ _ - _ E'[Dy) _ _
*Zu¢w*1+Tf andrlfpi1 1= P—l—l Tf
Prop: Risk Prem EF [1 4 7,] = (1 + /) (1 — Cov® (n,1+ Fn))
= 7, =EF {Fn —rf] =-(1 +7"f)COVP (n,Fn —rf)
and EQ [f,] = ! Wn —s EQ [Fn 7rf] =0Vn
P
Note: p(n,Dn) =0 = 7 =rf (but #, # ) and P, = ;Elf:?l
EP [ —rf Verow ey
Prop: (Hansen-Jagannathan) SR, := \/Var[ﬂ”z;n—r]f) < ;;;?:](")

FTAP: Corporate Finance

Yo: investment into the production opportunity at ¢t = 0

Yiw = Y (Y0), Yw € Q: prod output at t =1 y,,(0) =0,y, >0,y <0
Investment NPV v = ¢'y —yo = 3, ¢wyuw(Yo) — Yo

Agent’s t =0 Wealth w =eg —yo + ¢'(e1 +y1) = eo + ¢'e1 + v
Agent’s Opt Pb: maxyg cy.c; u([co,ci]’) s.t. w=co + ¢'c1
Agent’s Consumption: cog =eg — yo, c1 = e1 + Y1

Corporate Investment Decisions:j = 1..F firms: y;(y;j0) € RM
skj = share of firm j owned by agent k: Y, sx; = 1,Vj

Firm’s investment NPV at t = 0: v; = ¢'y;(y;j0) — yjo, Vk (MAX IT)
Agent k’s wealth: wy, = exo + ¢ ex1 + >, skjv;

Prop: y1 =dy +e1, D=¢'di, E=¢'e; and V =D+ E = ¢'y;.
NPV (Equity)= ¢'(y1 — d1) — eo = ¢'y1 — (do + e0) = ¢'y1 — yo
Example: (Labor vs Wage) Firm: hire L labor at wage W

= produce output Y (L) = AL® (a < 1), log A ~ N(A,c%)

Can borrow at rf, and Log-SDF: logM =8 +¢ , & ~ N (0, az)

Firm’s pb: max;, — WL + E[MAL®] = L = (aE[MA]/W)1/ (-

FTAP: Fundamental Value of a Stocks

CFs: X; = D; + P; (div + share price) Ret: Ry = P—t’ = Dtpitpt.
(PV) Py = E; [ni41(Pig1 + Dig1)] = EY [Ek—l ﬁ}
= P, =B} [0 Nstpn Digr] with neys o= 1_[?:1 M+
P
th : P [ (k) _ _ Ei[Diyi] _ E¢[Payoff]
k"" Period Ret E, [Rt:t-l—k] = Ew[m tkDirn] . Price

k (k
== Pt( ) = E} [9e:t+8Detr] = Ef [Dyys] /EY [ b t)Jrk]

(DCF) Py =E} [Y52 neveanDigr] = 352, Ef [Digr]/E; [ tkt)+k]

FTAP: Fixed Income Securities

Py ¢ = price of N-period bond at time t that pays FV =18 at t + N.
1 period: N =1, state s; = j: P1+ = P1(J) = E¢ [e41]

N: Pnye =Ee [me41Pr—1,e41] = E¢ [ne41 X -+ X ey n] = Eg [n6:64N]
Yield Curve (YC)/ Term Structure of Interest Rates:

YTM: Yy, = [P];J”N -

Log-Framework pn,: = log PN,t, YN,t = IOgYN,t PNt = —N YNt
Proposition (YC Recipe) Py :=E: [n¢¢4+n5]: YC<Smoments of SDF
(1) Define State Variables: z; (data = need at least 3).
(2) Assume SDF 7y = n(z¢) or Log SDF m: = logn:.
(3) Give law of motion for z; under P (use 7(x¢41,2¢))

OR Give law of motion for #; under Q (use r¥)
(4) Sol°: Iterate on pricing eq. Pn(z¢) = E¢ [n(xt+1)Prn_1(zt41)|zt]
(5) Guess pn,¢+ = log(Pn,¢) ~ affine in z; & find coeffs

N
[payoff/price] /N — Py, = [ﬁ]

Example: (Vasicek model, 1977)
(1) One State Variable: =

(2) Assume Log SDF: m;y1 = log(ni41) = —z: — 5 (2 )

5f+1

3 ARl under P: z411 = p+ ¢pxy + oepy1; with ¢ < 1, atlflsNO 1
+ +

(4) Sol°: Iterate on pn,: = log B [exp (my41 + PN—1 t+1) |95t]

Use: (z¢41|Ft) ~ N(p+ ¢ze,0) and (myy1]|Fe) ~ N(—z — 3 (2 )

p1,+ = logEy [exp (me41)] = —2¢ — 3 (%)2 +1 (%) =0- 1 Tt

— Short Rate: z; = y1; = log(1 +rf) — mean-reverting AR(1)
p2,t = logEy [exp (mi41 + p1,e4+1)] = log Ey [exp (M1 — @e41)]

= —(+®)o+ [-5(2) +u+4(2+0)°] = A+ Baay

(5) Guess Pn,t = Ay + By -

Pnit =An+Bn-xy = ;Dn+1 t =Ant1+ Bny1 -
Bp=—1+¢By 1 =—172"
Ap=An_ 14+ Bn_1(p— XN+ 1B _,0?

x¢ with:

Example: (Cox-Ingersoll-Ross, 1985)
(1) One State Variable: =
1

(2) Assume Log SDF: m¢11 = —2; — 3 (;) T — ( )
(3) Under P: z441 = pu + ¢zt + omg'se,prl; with ¢ < 1, & id N(0,1)

5t+1

(4) Sol°: Tterate on pn,¢ = log B¢ [exp (M1 + PN—1,¢41) |T¢]
Use: (myi41|x) = cst — (%) x?'seH_l and (pN—1,¢+1]|2t) L e¢41
=(mip1+pN—1,t41|ze)~N(Ee[mep1+pN—1,e41], SDe[mep1+pN—1,¢41])
= pN,t = B¢ [meq1 + pN—1,041] + 3 Var [meg1 + pn—1,e41]
= pn,t = B¢ [meg1 + Pr—1,e41] + 2 Vary [mey]

+3Vary [py—1,¢41] + Cove (Meg1, PN—1,641)
= p1,0 = E; [mip1] + $Vary [my41] therefore:
Nt =p1,t+E: [pN—1,641]+ é\/ar, [pN—1,t41]+Covy (Mig1, PN—1,141)
= pe=-2—3(3) e+ 5 (3) = —a
—> Short Rate: z; = y1+ = log(1 +rf) — mean-reverting AR(1)

]

(5) Guess pp,+ = Ap + By, - o4, therefore:

Prt1,t = P1,t + Bt [Pn,e41] + 3 Vare [pn,e41] + Cove (Meg1, Pr,t41)
= —xy + [An + Bu(p + ¢xe)] + 3 [BR o] + [—Bnix]
=[Ay + pBo]+[-1+ (¢ — \)Bn + (1/2)0° B2z

—_———

Apti Bpt1

Proposition (Bond Pricing with Real Returns)
Real: SDF=7/, Price=P] — P , = E, [n{HP;_LHJ
Nominal: SDF=n;, Price=P; and Price Level: II;
o
= Pn,t = P:,th =E; |:7II+1Pn71,t+1 ﬁ]
s . 1
Net1 = N4 Htjrl =i TFmoy1

Fisher Eq: ﬁ(l + E¢[meq1]) = ﬁ g re R Gy — Be[miqa]



FTAP: Options

Underlying Asset X; = Payoff of asset at time T > ¢,

s.t. f(Xr) = payoff of derivative security at T' > t, f(-) known.
=E; [ner - f(X1))

T = 1: maturity/exercise date ; K = strike/exercise price
Payoff: Call ¢; = [S1 — K|y, Put p1 = [K — S1]4.

c(S,K) = V(e1): call price ; p(S, K) = V(p1): put price

¢(S, K) \( + convex in K and p(S,K) /' in K

(Intrinsic Value) Call: I =S — K ; Put: I =K — S
In-The-Money: I > 0, S > K (call), K > S (put)

Portf of Options: ¢(S'0, K'0) < "N, 0,¢(S;, K;)

and p(S'6, K'60) < ZN 0:p(Si, Ki)

Prop: Bounds: [S - Ten f < c(S, K) <Ss

Prop: Put-Call Parity: ¢(S, K) + o7 T D=0 = p(S,K)+ S
Price: C(S, K) American Call | P(S, K) American Put
Prop: D= Divid (t = 0), S=ex-divid price P(S, D, K)
=max{K-S-D, p(S, K)}; C(S, D, K)=max{S+D-K,c(S, K)}
Prop: Binomial ¢(S, K) = ¢ [uS — K]+ + ¢q[dS — K] with

Prop: Derivative Price: Given n: PtD

f_
{Cu = [uS — K]t Pu = 1+1'rf % ) {,‘v’ = ¢ uS + pqdS
cqg =[dS — K u—1—rf ! = Qu + P4
a=| 1+ ba = 1+7‘f =1 7
Replic Portfolio 6 = [0s5,05] ¢(S, K) =
payoff, = 6suS + 05 = cu (105 = s
) ucg—dey
payoffy; = 05dS + 6p écd 0p = —f=g*
i _E9S—KIy] _ geut(—a)eqg .. 1o0f
Risk-Neut ¢(S, K) = T = Tt () q=H=4

Exact Arbitrage Pricing Theory (APT)
Prop: SDF Portf: n=EF [r_,] +EF [n] —r_,

P
E [returns] Decomp 7, = EF |7, — rf] = %W SA=Bn A
with X\ :=EF [r_,] — rf = (1 + rH)varf (n)
Idiosyncr Risk: 1y, ¢ — rf =an, + Brn(r—n,t — 'r'f) +en,t
Prop: Var Deco: Var (rn — rf)=,872LVar (1"_7, — rf) +Var (g,,)
Factor Structure F= Basis for D, rank (D) = K < M — 3 redund
F =[F,...,Fg] € RM*X and F, € RM*1; Beta 8, € RY;

C={D6: GeRN} VZ € C,38z = [Bz1,---,BzKk] st. Z=FBy

Factor Pricing: R, = R, +en = Ry + FB, = R, + Zk_l Fi.Bnk
— R=R+e=R+FB (soneedEF [FB] =0, EF[¢,] = 0)
— One RF factor v := F; = 1) and (K — 1) risk factors
Prop: Exact APT: Let R,, = Ry, + F8,, n=1,..., N, where:

(1) F = [Fy,..., Fx] (K risk factors, EF [F] = 0)
(2) Bn = [Bni,---Bnk] (asset n’s beta)
NA. = Ry —RI =7, -/ =K  XNBur =XNBn ,n=1,...,N

where Ay = —EQ[F}] = 7, — rf (Fr=fact k) and A = [Aq,. ..
Risk-Free Portf: set Bporet = 21 OkBr =0, 25, 0k =1
Factor Portf: set Bporcf = Zk 0rBr =1, Zk O =1

General Arbitrage Pricing Theory (APT)

Model for Ret: r,, = 7, + EkK=1 Bk Fi +en, for (r=7+ FB+¢)
with: (1) E® [F}] = E¥ [e,,] = EF [e,,| Fi] = 0, Yk, n

(2) E¥ [e2] = 02 < v < 0o, and EF [ene,/] =0 Vn # n/
Var® (r,,) = BLEF [F'F] B + Var® (e,,),Cov’ (i, 7;) = BIE® [F'F] B;
Portf Ret: rg =79 + FBg +eo (ro = 0r, 79 = 07, Bo = 03, €9 = O¢)

,AK]'

Div Port: 6, = O(1/n) , 0 = [01,...,0n], 01y =306, =1
Div Seq: {6,}2% |, with 0,1, = > 7 , 6, ; = 1, is Well-Diversified
<= 3k € (0,00), s.t. 9i1i<m/n2,Vi=1 ,n, Vn >1

Div Thm: {6,}5%, div seq: Var® (gg,,) = Var® (327 On,ici)—0
Asy Arb: {0,}°2, s.t. 1,6, =0, E¥ [rg,,] = a > 0, Var® (re,) — 0
Prop: NAA — NA

Prop: APT: Given NAA + K-Fact: 3rf € R, A = [Aq, ...
S [m-

NAA = approx. factor pricing: 7, — rf

LAk € RE:
r + ,\'gi)]2 =3, |:r1 — ( f ;ij A;ﬂm\z]2<A<oo
~ el NkDiks 1

Optimal Portfolio Choices
Expected Utility (E.U.) Theory

Continuity: VceC: {a€C :a = ¢} & {beC : b < c} closed

— Yan} = a,{bn} >b€C:a, =bp=>a=b

Insatiability: a > b = a = b (more = less)

Convexity: Va € (0,1): a2 b& c=b = aa+ (1—a)c=b
Prop: Convex > = convex sets of preferred bundles {a € C : a = ¢}
EU: over consump path/lottery u(c,p) = > cq Pwtw(co, 1w), ¢ € C.
Continuity: V consumption ¢ € C, probas pg, pp, Pec:

le,pa] = [c, o] = [c,pe] = Fa € (0,1) : [, po] ~ [¢, (1 — a)pa + apc]
Indep: V consumption ¢ € C, a,pa, Py, pe € (0,1): [¢,pa] = [c, pb]

= [¢, (1 = a)pa +apc] = [c, (1 — a)py + apc]

Assume: u(c,p) = u(co) + p X, cq Pwt(ciw) With p € (0,1)

Marginal Utility: At consumption level c: u’(c)

Prop: Insatiability = w is strictly , v’ >0

Concave: u(az + (1 — a)z’) > au(z) + (1 — a)u(z’)
Prop: u concave & twice differentiable <= u' < 0, v’ N\,

Risk-Aversion

Risk Aversion: E [u(w + z)] < E [u(w)] for any E [z] = 0.

Risk Prem: E[z] = 0, EU u, wealth w: E [u(w + z)] = u(w — )
Certainty Equivalent w(weog) = E [u(w)]

Abs RA: A(w) = ((w)) Prop: Small Gamble z: &~ A - Var (z)

) Eu(w+ 2)] = u(w) + jz/ "(w)E [,r"r =u(w — ) = u(w)-u' (w)w
Rel RA: R(w) = —w zl,l((s)) Prop: Small Risk wz: mp ~ %R - Var (z)
¢.) Efu(w(l+z))] =u(w(l —7Rr))

Prop: Pratt: Agents 1 & 2 w/ EU uy & uo: Ay (w) > Az(w) Vw
= w (uz_l()) concave <= m; > w2, Vw & fair gambles z
< 3fst: f1>0,f" <0& ui(w) = f(uz(w))

Risk Neutr: A(w) = R(w) = 0, Linear EU:u(w) = w
CARA: A'(w) = 0, Negative Exp EU: u(w) = —e™ %%,
—> CARA agents: A(w) = a, R(w) = aw
CRRA R'(w) =0, Power EU u(w) = 2w’ ™7, y > 1
—> CRRA agents: A(w) = v/w, R(w) =~ Prop: v — 1 = Log EU
Log EU: u(w) = logw = CRRA agents: A(w) = 1/w, R(w) =1
IARA/DARA: A'(w) 2 0; IRRA/DRRA:R' () 2 0

Quadratic EU: u(w) = w — 0. 5aw ,a>0,w E [o, l/a]

= IARA agents: A(w) = R(w) =

a>0

Optimal Consumption/Portfolio Choice

Setting: N non-redund assets, payoff D, price P

Agent: Endowt e = [eg, €}]’, Consumpt plan ¢ = [cg, c}]’, Portf 6
EU: u(c) = uo(co) + E [u1(c1)] with u} >0, u} <0 (¢t =0,1)

Agnt Opt: maxg uo(co) + E[ui(c1)] s.t. co = eo — P'0, c1 = e1 + DO
P’ = eg — co=time-0 savings

Assumptions (Complete Market)

Complete set of AD securities, State Price ¢ > 0

Agent: endowement e = [eo, e}]’, wealth w = eq + ¢'e1

Budget: B(e) = {c:co+ ¢'c1 = w} (Simplify: ignore ¢ > 0)
Marginal cost = ¢,,: Additional $1 in asset w = c1, " by 1/¢o

ug(co) + >, Pwt1(Crw)
coto’cy=

Lagrang: £ = uo(co) + 3, Pwt1(ciw) — A [co + ¢'c1 — w]| = Oeq, Ocy
FOC: X\ = u((cop) — marginal value of wealth

Proposition (Optimization) max

OE - .
Abw = puuf(ciw) = % — margin benefit of  c1, = 0, D1,
/
N = e — “'1(Clw) intertemp marg rate $w _ _Pwu](c1y)
w Pw O(CO) of substitution > é_/ pw’“’l(clw/)

Prop: wuy strictly concave =—> u; strictly N\, & u;71 exists

Theorem (Optimal Portfolio Choice™ ™) Solve FOC:
co = uéfl(k) and c1, = u/fl (z\ﬁ—:) Yw € Q
(25’61()\)

where X\ solves budget constraint: w = eq + ¢'e1 = co(A) +
Characterization of Optimal Portfolio:

Proposition (Optimization) maxg ug(eo — P'0) + E [u1(e1 + D))
= maxg ug(eo — P'0) + >, puu1 (em + 3N e'n.Dlu.)n)

Euler Eqn: FOC: u{(co)Pn =E [t} (c1)Dyn], n = 1..N

Prop: Portf Decomp: Agent’s t = 0 savings: w = eg — co = P’0

—> Optimal consumpt/portf choice: max,, {ug(eg — w) + v1(w)}

v function: vi(w) = max g, prg=yy} E[ui(e1 + D))

Example: (Special Case) e; = 0 (agent endowed only with e cash)
=—> Portf Choice Pb: v(w) = max{g:P’Q:w}E [u1 (D))

Riskless asset: asset N with gross return R, =1+ rf

an = 6, Py: $§ invested in asset n = w =) a, total investment
Portf payoff: @ = D0 = 3N_ a, R, = w1 +77) + ZN_ll an(rn —r)
Excess Return of asset n: r, — rf

,an—1]" investment;

General Pb: r = [r1,...,rNn—1] risky; a = [a1, ...

Optimal Portf: max, E [u()] = max, E [u (w(l +r)y+ (r— rfL/)a)]
= FOC:JE[ (@) (rp — v )] —0Vn=1.N -1
Properties of Optimal Portfolio:

Case 1: Assume only ONE risky asset:

f | invest risky

Prop: @ = w(l + ') +a(r —rf) (-
Prop: Opt Investment a: Agent = strictly RA

a>0 <= 77>7"f;a<0 <~ f<7"f;a=0 — r=rf
Prop: risk-premium> 0 = agent invest at least ¢ in risky asset
Proposition (Abs RA) Assume 7 — 7/ > 0 (so a > 0)

a'(w) >0 A'(w) <0 (DARA) ; a/(w) =0 A'(w) =0 (CARA)
a'(w) <0<« A'(w) >0 (IARA — very rare)

‘) borrow at r

E[u”(i’)(r—rf)}

. g iff: da — _ - f
Prop: You see from FOC diff: & = —(1 + 7 ) e )= T)]
Relative Propensity: for investor in risky asset: e(w) = %g—ﬁ]

Note: e(w) = 1 & a(w) = a@- w: risky invest™ = CST fract® of wealth

Prop: Rel RA: Assume 7 — 77 > 0 (so a > 0)
e(w) > 1« R'(w) <0 (DRRA) ; e(w) =1« R (w) =0 (CRRA)
e(w) <1<« R'(w) >0 (IRRA — very rare)

Case 2: Assume MULTIPLE risky assets:

Prop: @ = w[(1 4 ) + a'(r — r71)]

Theorem (Opt Investment a) a =0 E[r,] =7/ vn=1.N -1
Theorem (Opt Investment a II) Some risk-prem on risky assets7#0
= E[rpores] > ¥ (e, SN an(@lra] —rf) > 0)

Prop: USEFUL FORMULAS: @ = w(1 + %) 4+ a(r — rf)

@ =w[(1+7r) +a (r—rf1)] = wR +a'(R— R/

c1 = (wo — co)RF +a(R—RT) ; wo =eo — co

cr=er +wl+rf)+alr—rf)=e + (e0 — o)1 + ) +a(r—r')

~ N 1 N _ SN

@= TN 0Dn +25 (S0 P -XNL Py )
N = N~ N =’
Asset n t=0 wealth wealth invested

Payoff
FSD: A 2psp B <= Vu' > 0:E[u(ra)] > E[u(rg)]
Prop: A Zpsp B = 7a > T but converse FALSE!
Prop: A Zrsp B & Fa(z) < Fp(z) Vm@rAirB—i-e, with e > 0
Ordering: A 2psp B = : foru’ > 0,u” <0
max, E [ (w1 +rf) +a(ra — rf))] >max, E [u(w(l +rf)y+a(rs — ’I"f))]
SSD: A >SSD B < Vvu’' <0: ]E[u(RA)] > E[u(RB)]
Prop: ONLY WORKS IF R4 = Rp !
Prop: A Zssp B = Var(R4) < Var (Rp) but converse FALSE!
Prop: Rothschild-Stiglitz: A 2gsp B
<= E[Ra] =E[Rp] and [Y[Fa(z) —
<= Ra SRB-‘rE, with ]E[E‘RB]=0
Prop: Ra ~ N(u,0%), Rg ~ N(p1,0%): 04 <op = A 2ssp B

(endowment) in risky assets

Fg()lde =: S(y) < 0 Vy



In Practice

Consumption Choice Problem 1:

Setup: M =2 states, N=2 assets (1 RF + 1 risky)
t=1 returns: R= [} Z}, probs: 7y, 4.

Agent: initial wealth wg, final w; = 0.
Portf Weights (RF/Risky asset): a = [a1, az]’
Max Prob: max logco + BE [logc1]
cp,c1,

2 Budget Constraints: ¢; = (wo — ¢o)Ra
(a) Find optimal a = a(wg, co, (:1)'
Complete Market: 3IR™! = a = WO*LO R}
(b) Rewrite Constraints Using Only (wo,co,cl):

_ p/p—1 _: _ ¢
¢ =P R™" with P = ,:nd*ﬁ
= Constraint: wo := co + E[nc1] = co + munuci,u + Tandci,a
(c) Optimize over (co,c1) + Find co(X),c1(N):
max log co + BE [log 1] s.t. wo = €o + TuNuCl,u + TaNdac1,d

[171]/ 80 Nu =

L =logco + BE[logc1] — X (co + TuNucCi,u + TaNdc1,4 — wo)
SO XN=1/co; L Amsns = Brs/c1,s with s = u,
_ 1 _ B _ coB _ B
= ¢ =x Clu = 3po = b CLd = Xng = Tng

(d) Plug X in constraint + Get A = \(wg):

Wo = Co + TuNuClu + Fanacr,a = + + 4L 4 T8
— A= 18

wo
(e) Get co(wo), c1(wo):
€= T¥s  Clu = Trg o,
Consumption Choice Problem 2:
Setup: 1 RF (return rf) + 1 Risky asset:

r=r4+o0e e~N(@O1) ((F>rf)

Agent: eg > 0 and e; = he (h > 0)
0 _ pE [eiacl], a >0 cst

w

=]

C1,d = 7ﬁﬁ

5 \

Maximize: max —e ™
co,e1
(a) Invest a in risky asset:

Write t = 1 consumption c; = c1(eg, €1, co, a, rf,r)
cao=er+wl+rf)+alr—rf)=e 4+ (eo — o)A+ 1) +a(r —rF)
(b) Write optimal portf choice problem:

e _ R |:e—(’(91+(60—Co)(1+Tf)+a(T—Tf)>:|

max —e
cp,a

(c) Write FOC: -+ and d‘jﬂ
(d) Solve FOC for Opt Portf Choice problem: Get a, ¢y

(e) How does h influences cg and a?

co N\ in h. Higher uncertainty about e; = lower certainty
equivalent of this payoff. When h is high: agent feels poorer = wants
to consume less.

a N in h. Higher uncertainty about e; = less willingness to invest
in the risky asset (adds risk to cy).

Consumption Choice Problem 3:

Setup: 1 RF (asset 0) +N risky assets: n =1,.., N

Returns: Rg = Rf =1and D, = D+4¢, (n=1..N), e, N N(0,0)
Prices: Pp =1, P, = P for all n

Agent: CARA u(w) =—e ", a>0

Endowment: 1 share of each asset n, 0 shares of RF.

Portfolio holdings of risky assets: 8 = [01,...,0n] € RN

(a) Write agent’s wealth w at t = 1:

BoS 0aDy (TR P -Xh. 0m )
S—— N~ S——

wealth invested
in risky assets

Asset n t=0 wealth
Payoff (endowment)

(b) Write Optimal Portf Choice Pb:

max E [—e*‘“"’} st =N 0.Dn + XN (1-0,)P,
D, " N(D,o?)
— W~ N(

N 0. Dn+ N (1—0,)P,, 0> SN, 32)

= —aw ~ N (—a SN 0.Dn —aXN_ (1 -6,)P,,a%0? N 92>
]E[fef‘“z’}zfcxp( azn 10.Dy, 7(12 1(170 )Pn+”7a

— max Z 0,.D, + Z (1—6,)P, — go’2 Z 0

n=1

(c) Solve Optlmal Portf Pb: FOC w.r.t. 6,
D— Py —a0%0, =0 = 0, = 2=1n
(d) Show: for different values of RA a, 2-Fund Separation Holds:

Initial Wealth of Agents: wo = > N_, P,
—> agents invest optimally fractions

n*l 62)

D—Pp)P, .
InPn — l% of wealth in asset n
wo a  wgo
and 1 — L 2=Ln)Pn iy RF agsect
a wpo

— agents hold lin comb of RF asset

and risky portf zpr = [z1,...,zN] (zn = %)
Depending on RA: Hold %XM in risky & 1 — %XML in RF
(e) If agent = only agent in market

Find Equilibrium Risky Prices P,
D—Py,
aaz

Market Clearing: 1 L 6, = = P, =D —ac?

(f) Find Risk Premium on Risky Assets 4+ N — oo Limit:
Wn:RnfRf:]E[Rn]flzlE[PLn"] 2«72 indep of N
(g) Does APT Hold in this Market when N — co?

3 Asymptotic Arbitrage in this Market: (so APT can’t hold)

71: _ac

Seq of arb portfs: 0(1]\’ = -1, 971:[ = % Vn

— 2
E[TQN]:ES*I% _1:f1_1:ﬂ'1:#>0

While Var (r,n) = SN, Ly Var (e,) = % =0
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