
Fundamental Theory of Asset Pricing
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Arrow-Debreu State-Space Framework

t = 1 State Space: Ω = {ω1, . . . , ωM} =⇒ M states
K Agents k = 1, 2, . . . , K N Assets n = 1, 2, . . . , N

Endowment: ek := [ek0 , e
k
1
′
]′ = [ek0 , e

k
11, . . . , e

k
1M ]′ ∈ R1+M

Consump Plan: ck := [ck0 , c
k
1
′
]′ = [ck0 , c

k
11, . . . , c

k
1M ]′ ∈ R1+M

Consump. Set: C := {ck : feas.} ⊆ R1+M ; Usual: C = R1+M
+

Prop: C is a closed + convex subset of R1+M .
Budget Set: Set of consumption plans given by purchasing θ:
B(e, {D1, P}) := {c ≥ 0 : θ ∈ RN , ck0 = e0 − P ′θ, ck1 = e1 +D1θ}
Complete, No redund: rank (D1) = M = N =⇒ θ = D−1(c1 − e1)

=⇒ B(e, {D1, P}) = {c1 ∈ RM+ : P ′D−1
1 (c1 − e1) ≤ e0}

Payoff Vector: D1n = [D11, . . . , D1M ]′ ∈ RM , D1ω at t = 1 state ω.

Market Structure: D1 = [D11, . . . , D1N ] = [D1ωn]M×N ∈ RM×N
Price: Pn ∈ R : price of security n at t = 0.
Price Vector: P = [P1, . . . , PN ]′ ∈ RN at t = 0.

Portfolio: θ = [θ1, . . . , θN ] ∈ RN⇒ costt=0 = −P ′θ, payofft=1 = D1θ.

B Matrix: B := [−P ′, D]′ ∈ R(M+1)×N .

Prop: c = e+ B′θ = [e0 − P ′θ, [e1m +
∑N
n=1 Dn1mθn]′M×1]

Market Clearing:
∑K
k=1 θ

k(P, ek) = 0 i.e.
∑K
k=1 c

k =
∑K
k=1 e

k.

Arbitrage

Redundant Security: ∃θ\n s.t. D\nθ\n = Dn
Prop: rank (D1) < N=redundant; rank (D1) < M=Incompl

(Im(D1) ( RM ); rank (D1) = N = M= Compl + no redund
Payoff Space:
C1(D1) := {c1 = D1θ ∈ RM : θ ∈ RN} = span (D1, . . . , DN ) ⊆ RM
Complete Market: rank (D) = M (need N = M)

AD Securities: DAD := IN×N (complete market):

→ construct using portfolio θ = D−1 (∵) Dθ = I = DAD

State Prices: φ = (D−1)′P , P ′ = Φ′D; φω = price of eω at t = 0.

Arbitrage Existence: ⇐⇒ ∃θ ∈ RN s.t. Bθ > 0⇐⇒ ∃φ� 0

ex: CIP Formula Forward contract price: F = S¤→$ ×
1+r$
1+r¤

Fundamental Thm of Asset Pricing (FTAP)

Valuation Op: V positive Linear Operator
Theorem (FTAP) NA⇐⇒ ∃φ� 0 s.t. P ′ = φ′D (P = D′φ)

Note: If rank (D) = N , then D′D full rank: P ′ = θ′D′D.

=⇒ θ∗ = (D′D)−1P , φ∗ = D(D′D)−1P and η∗ = φ∗Diag (p)−1

Note: Redund asset =⇒ φ not unique. If 6 ∃φ� 0 =⇒ ∃ arb

Example: (Incomplete Market) D = (1, 2, 3)′, P = 1 :
=⇒ Φ =

{
φ� 0 : φ′D = 1

}
= {φ� 0 : φ1 + 2φ2 + 3φ3 = 1} .

Price D2 = (2, 2, 2)′ : P2

Example: (Incomplete Market II) Find price Pb of new security
with payoff b s.t. b /∈ span (D1) (i.e., not redundant):

Pb =
{
φb : φ� 0, P ′ = φ′D1

}
i.e., inf

φ∈Φ�0
φ
′
b < Pb < sup

φ∈Φ�0
φ
′
b

If Security b is redundant: Pb = {Pθ : θ ∈ Rn, D1θ = b} = φ′b.

State-Price Density/Risk Neutral Measure

Risk-Neutral Pricing:

1. P ′ = φ′D =⇒ get state prices φ.
2. Get RF rate: 1 + rf = 1∑

ω φω
.

3. Construct Q =
{
qω = φω∑

ω′ φω′
= (1 + rf )φω

}
.

4. Price any asset with payoff vector Dn:

Pn =
EQ[Dn]

1+rf
= 1

1+rf

∑
ω qωDnω.

5. Get Expected Return: 1 + r̄n = (1 + rf )
EP[Dn]

EQ[Dn]
.

SDF/SPD: Pn = φ′Dn =
∑
φωDnω =

∑
pω

φω
pω
Dnω

Proposition (P ∼ Q) EP [X] = 1

1+rf
EQ
[
X
η

]
, & φω = qω

1+rf
= pωηω

SPD/SDF Pricing: you must know P = {pω}:
1. P ′ = φ′D =⇒ get state prices φ.

2. Get SPD/SDF: η = φω
pω

.

3. Price any asset with payoff vector Dn:
Pn = EP [ηDn] =

∑
ω pωηωDnω .

4. Get Expected Return: 1 + r̄n =
EP[Dn]
Pn

=
EP[Dn]

EP[ηDn]
.

5. Get RF rate: 1 + rf = 1

EP[η]
.

Discounted Cash Flow (DCF)/Present Value (PV) Formula:

Discount Rate/Expected Rate of Return:

1 + r̄n =
EP[Dn]
Pn

=
EP[Dn]

EP[ηDn]
= (1 + rf )

EP[Dn]

EQ[Dn]
=

EQ[Dn/η]

EQ[Dn]
.

Gross Return: Rt+1 =
Payoff(t+1)

Payoff(t)
=

Xt+1
Pt

=
Dt+Pt
Pt

Net Ret: rt = 1 + Rt. Random r̃n : rnω = Dnω
Pn
− 1

Note: r̃1ω = rf , EP [r̃n] = r̄n, and 1 + r̃n = Dn
Pn

Excess Ret: = rt − rf . Risk Prem: πt = EP
[
r̃n − rf

]
= r̄n − rf .

Sharpe: SRt =
E
[
rt−rf

]
Std(rt−rf )

=
E[return]
Unit Risk .

Prop: (DCF/PV) Pn =
EP[Dn]
1+r̄n

=
∑
ω pωDnω
1+r̄n

= φ′Dn

P1 =
∑
ω φω = 1

1+rf
and r̄1 =

EP[D1]
P1

− 1 = 1
P1
− 1 = rff

Prop: Risk Prem EP [1 + r̃n] = (1 + rf )
(

1− CovP (η, 1 + r̃n)
)

=⇒ πn = EP
[
r̃n − rf

]
= −(1 + rf )CovP

(
η, r̃n − rf

)
and EQ [r̃n] = rf ∀n −→ EQ

[
r̃n − rf

]
= 0 ∀n

Note: ρ (η,Dn) = 0 =⇒ r̄n = rf (but r̃n 6= rf ) and Pn =
EP[Dn]

1+rf

Prop: (Hansen-Jagannathan) SRn :=
EP
[
r̃n−rf

]
√

VarP(r̃n−rf )
≤
√

VarP(η)

EP[η]

FTAP: Corporate Finance

y0: investment into the production opportunity at t = 0
y1ω = yω(y0), ∀ω ∈ Ω: prod output at t = 1 yω(0) = 0, y′ω ≥ 0, y′′ω < 0
Investment NPV v = φ′y − y0 =

∑
ω φωyω(y0)− y0

Agent’s t = 0 Wealth w = e0 − y0 + φ′(e1 + y1) = e0 + φ′e1 + v
Agent’s Opt Pb: maxy0,c0,c1 u([c0, c

′
1]′) s.t. w = c0 + φ′c1

Agent’s Consumption: c0 = e0 − y0, c1 = e1 + y1

Corporate Investment Decisions:j = 1..F firms: yj(yj0) ∈ RM

skj = share of firm j owned by agent k:
∑
k skj = 1, ∀j

Firm’s investment NPV at t = 0: vj = φ′yj(yj0)− yj0, ∀k (MAX IT)
Agent k’s wealth: wk = ek0 + φ′ek1 +

∑
j skjvj

Prop: y1 = d1 + e1, D = φ′d1, E = φ′e1 and V = D + E = φ′y1.

NPV(Equity)= φ′(y1 − d1)− e0 = φ′y1 − (d0 + e0) = φ′y1 − y0

Example: (Labor vs Wage) Firm: hire L labor at wage W
=⇒ produce output Y (L) = ALα (α < 1), logA ∼ N(Ā, σ2

A)

Can borrow at rf , and Log-SDF: logM = δ + ε , ε ∼ N(0, σ2
ε)

Firm’s pb: maxL −WL+ E [MALα] =⇒ L = (αE [MA]/W )1/(1−α)

FTAP: Fundamental Value of a Stocks

CFs: Xt = Dt + Pt (div + share price) Ret: Rt =
Xt
Pt

=
Dt+Pt
Pt

.

(PV) Pt = EP
t [ηt+1(Pt+1 +Dt+1)] = EQ

t

[∑∞
k=1

Dt+k

(1+rf )k

]
=⇒ Pt = EP

t

[∑∞
k=1 ηt:t+kDt+k

]
with ηt:t+k :=

∏k
j=1 ηt+j

kth Period Ret EP
t

[
R

(k)
t:t+k

]
=

EPt [Dt+k]
EPt [ηt:t+kDt+k]

=
Et[Payoff]

Price

=⇒ P
(k)
t = EP

t [ηt:t+kDt+k] = EP
t [Dt+k]/EP

t

[
R

(k)
t:t+k

]
(DCF) Pt = EP

t

[∑∞
k=1 ηt:t+kDt+k

]
=
∑∞
k=1 EP

t [Dt+k]/EP
t

[
R

(k)
t:t+k

]

FTAP: Fixed Income Securities

PN,t = price of N-period bond at time t that pays FV = 1$ at t+N .

1 period: N = 1, state st = j: P1,t = P1(j) = Et [ηt+1]

N : PN,t = Et [ηt+1PN−1,t+1] = Et [ηt+1 × · · · × ηt+N ] = Et [ηt:t+N]

Yield Curve (YC)/ Term Structure of Interest Rates:

YTM: YN,t =
[

1
PN,t

]1/N
= [payoff/price]1/N −→ PN,t =

[
1

YN,t

]N
Log-Framework pN,t = logPN,t, yN,t = log YN,t pN,t = −N · yN,t
Proposition (YC Recipe) PN,t=Et [ηt:t+N ]: YC⇔moments of SDF
(1) Define State Variables: xt (data ⇒ need at least 3).
(2) Assume SDF ηt = η(xt) or Log SDF mt = log ηt.
(3) Give law of motion for xt under P (use π(xt+1, xt))

OR Give law of motion for xt under Q (use rf )
(4) Sol◦: Iterate on pricing eq. PN (xt) = Et [η(xt+1)PN−1(xt+1)|xt]
(5) Guess pN,t = log(PN,t) ∼ affine in xt & find coeffs

Example: (Vasicek model, 1977) .
(1) One State Variable: xt
(2) Assume Log SDF: mt+1 = log(ηt+1) = −xt − 1

2

(
λ
σ

)2 − λ
σ εt+1.

(3) AR(1) under P: xt+1 = µ+ φxt + σεt+1; with φ < 1, εt
iid∼ N(0, 1)

.
(4) Sol◦: Iterate on pN,t = log Et [exp (mt+1 + pN−1,t+1) |xt]
Use: (xt+1|Ft) ∼ N(µ+ φxt, σ) and (mt+1|Ft) ∼ N(−x− 1

2

(
λ
σ

)2
, λσ )

p1,t = log Et [exp (mt+1)] = −xt − 1
2

(
λ
σ

)2
+ 1

2

(
λ
σ

)2
= 0− 1 · xt

=⇒ Short Rate: xt = y1t = log(1 + rf ) −→ mean-reverting AR(1)
p2,t = log Et [exp (mt+1 + p1,t+1)] = log Et [exp (mt+1 − xt+1)]

= −(1 + φ)xt +
[
− 1

2

(
λ
σ

)2
+ µ+ 1

2

(
λ
σ + σ

)2]
= A2 + B2 · xt

.
(5) Guess pn,t = An + Bn · xt:
pn,t = An + Bn · xt =⇒ pn+1,t = An+1 + Bn+1 · xt with:

Bn = −1 + φBn−1 = − 1−φn
1−φ

An = An−1 + Bn−1(µ− λ) + 1
2B

2
n−1σ

2

Example: (Cox-Ingersoll-Ross, 1985) .
(1) One State Variable: xt
(2) Assume Log SDF: mt+1 = −xt − 1

2

(
λ
σ

)2
xt −

(
λ
σ

)
x0.5
t εt+1.

(3) Under P: xt+1 = µ+ φxt + σx0.5
t εt+1; with φ < 1, εt

iid∼ N(0, 1)
.
(4) Sol◦: Iterate on pN,t = log Et [exp (mt+1 + pN−1,t+1) |xt]
Use: (mt+1|xt) = cst−

(
λ
σ

)
x0.5
t εt+1 and (pN−1,t+1|xt) ⊥ εt+1

⇒(mt+1+pN−1,t+1|xt)∼N(Et[mt+1+pN−1,t+1], SDt[mt+1+pN−1,t+1])
=⇒ pN,t = Et [mt+1 + pN−1,t+1] + 1

2 Vart [mt+1 + pN−1,t+1]

=⇒ pN,t = Et [mt+1 + pN−1,t+1] + 1
2 Vart [mt+1]

+ 1
2 Vart [pN−1,t+1] + Covt (mt+1, pN−1,t+1)

=⇒ p1,t = Et [mt+1] + 1
2 Vart [mt+1] therefore:

pN,t = p1,t+Et [pN−1,t+1]+ 1
2 Vart [pN−1,t+1]+Covt (mt+1, pN−1,t+1)

=⇒ p1,t = −xt − 1
2

(
λ
σ

)2
xt + 1

2

(
λ
σ

)2
xt = −xt

=⇒ Short Rate: xt = y1t = log(1 + rf ) −→ mean-reverting AR(1)
.
(5) Guess pn,t = An + Bn · xt, therefore:
pn+1,t = p1,t + Et [pn,t+1] + 1

2 Vart [pn,t+1] + Covt (mt+1, pn,t+1)

= −xt + [An + Bn(µ+ φxt)] + 1
2

[
B2
nσ

2xt
]

+ [−Bnλxt]
= [An + µBn]︸ ︷︷ ︸

An+1

+ [−1 + (φ− λ)Bn + (1/2)σ
2
B

2
n]︸ ︷︷ ︸

Bn+1

xt

Proposition (Bond Pricing with Real Returns) .

Real: SDF=ηrt , Price=P rt −→ P rn,t = Et
[
ηrt+1P

r
n−1,t+1

]
Nominal: SDF=ηt, Price=Pt and Price Level: Πt

=⇒ Pn,t = P rn,tΠt = Et
[
ηrt+1Pn−1,t+1

Πt
Πt+1

]
ηt+1 = ηrt+1

Πt
Πt+1

=: ηrt+1
1

1+πt+1

Fisher Eq: 1
1+it

(1 + Et[πt+1]) = 1
1+rt

=⇒ rt ≈ it − Et[πt+1]



FTAP: Options

Underlying Asset Xt = Payoff of asset at time T > t,
s.t. f(XT ) = payoff of derivative security at T > t, f(·) known.

Prop: Derivative Price: Given η: PDt = Et [ηt:T · f(XT )]

T = 1: maturity/exercise date ; K = strike/exercise price
Payoff: Call c1 = [S1 −K]+, Put p1 = [K − S1]+.

c(S,K) = V (c1): call price ; p(S,K) = V (p1): put price
c(S,K)↘ + convex in K and p(S,K)↗ in K
(Intrinsic Value) Call: I = S −K ; Put: I = K − S
In-The-Money: I > 0, S > K (call), K > S (put)

Portf of Options: c(S′θ,K′θ) ≤
∑N
i=1 θic(Si, Ki)

and p(S′θ,K′θ) ≤
∑N
i=1 θip(Si, Ki)

Prop: Bounds:
[
S − K

1+rf

]
+
≤ c(S,K) ≤ S

Prop: Put-Call Parity: c(S,K) + K

1+rf
+Dt=0 = p(S,K) + S

Price: C(S,K) American Call , P (S,K) American Put
Prop: D= Divid (t = 0), S=ex-divid price P (S,D,K)

=max{K-S-D, p(S,K)}; C(S,D,K)=max{S+D-K, c(S,K)}
Prop: Binomial c(S,K) = φu[uS −K]+ + φd[dS −K]+ with{
cu = [uS −K]+
cd = [dS −K]+

φu = 1

1+rf
1+rf−d
u−d

φd = 1

1+rf
u−1−rf
u−d

(∵)

{
S = φuuS + φddS

1

1+rf
= φu + φd

Replic Portfolio θ = [θS , θB ]′ c(S,K) = θSS + θB
1

1+rf
with{

payoffu = θSuS + θB
!
= cu

payoffd = θSdS + θB
!
= cd

(∵)

{
θS =

cu−cd
(u−d)S

θB =
ucd−dcu
u−d

Risk-Neut c(S,K) =
EQ[[S−K]+]

1+rf
=

qcu+(1−q)cd
1+rf

(∵) q = 1+rf−d
u−d

Exact Arbitrage Pricing Theory (APT)

Prop: SDF Portf: η = EP [r−η] + EP [η]− r−η

E [returns] Decomp πn = EP
[
rn − rf

]
=

CovP(rn,r−η)
VarP(η)

· λ = βn · λ

with λ := EP [r−η ]− rf = (1 + rf )VarP (η)

Idiosyncr Risk: rn,t − rf = αn + βn(r−η,t − rf ) + εn,t

Prop: Var Deco: Var
(
rn − rf

)
=β2

nVar
(
r−η − rf

)
+Var (εn)

Factor Structure F= Basis for D, rank (D) = K ≤M −→ ∃ redund

F = [F1, . . . , FK ] ∈ RM×K , and Fk ∈ RM×1; Beta βZ ∈ RK ;

C = {Dθ : θ ∈ RN}: ∀Z ∈ C, ∃βZ = [βZ1, . . . , βZK ]′ s.t. Z = FβZ
Factor Pricing: Rn = R̄n + εn = R̄n + Fβn = R̄n +

∑K
k=1 Fkβnk

=⇒ R = R̄ + ε = R̄ + Fβ (so need EP [Fβ] = 0, EP [εn] = 0)
−→ One RF factor ι := F1 = 1M and (K − 1) risk factors
Prop: Exact APT: Let Rn = R̄n + Fβn, n = 1, . . . , N , where:

(1) F = [F1, . . . , FK ] (K risk factors, EP [Fk] = 0)
(2) βn = [βn1, . . . , βnK ]′ (asset n’s beta)

N.A. =⇒ R̄n − Rf = r̄n − rf =
∑K
k=1 λkβnk = λ′βn , n = 1, . . . , N

where λk = −EQ [Fk] = r̄k − rf (r̄k=fact k) and λ = [λ1, . . . , λK ]′

Risk-Free Portf: set βportf =
∑
k θkβk = 0,

∑
k θk = 1

Factor Portf: set βportf =
∑
k θkβk = 1,

∑
k θk = 1

General Arbitrage Pricing Theory (APT)

Model for Ret: rn = r̄n +
∑K
k=1 βnkFk + εn, for (r = r̄ + Fβ + ε)

with: (1) EP [Fk] = EP [εn] = EP [εn|Fk] = 0, ∀k, n
(2) EP [ε2n] = σ2

n < v <∞, and EP [εnεn′ ] = 0 ∀n 6= n′

VarP (rn) = β′nE
P [F ′F ] βn + VarP (εn),CovP (ri, rj) = β′iE

P [F ′F ] βj
Portf Ret: rθ = r̄θ + Fβθ + εθ (rθ = θr, r̄θ = θr̄, βθ = θβ, εθ = θε)

Div Port: θn = O(1/n) , θ = [θ1, . . . , θN ]′, θ′1N =
∑N
n=1 θn = 1

Div Seq: {θn}∞n=1, with θ′n1n =
∑n
i=1 θn,i = 1, is Well-Diversified

⇐⇒ ∃κ ∈ (0,∞), s.t. θ2
n,i < κ/n2 , ∀i = 1, . . . , n, ∀n ≥ 1

Div Thm: {θn}∞n=1 div seq: VarP (εθn ) = VarP
(∑n

i=1 θn,iεi
)
→0

Asy Arb: {θn}∞n=1 s.t. 1′nθn = 0, EP [rθn ]→ α > 0, VarP (rθn )→ 0
Prop: NAA =⇒ NA

Prop: APT: Given NAA + K-Fact: ∃rf ∈ R, λ = [λ1, . . . , λK ]′ ∈ RK :∑n
i=1

[
r̄i − (rf + λ′βi)

]2
=
∑n
i=1

[
r̄i −

(
rf +

∑K
k=1 λkβik

)]2
<A<∞

NAA =⇒ approx. factor pricing: r̄i − rf ≈
∑K
k=1 λkβik, ∀i

Optimal Portfolio Choices

Expected Utility (E.U.) Theory

Continuity: ∀c∈C: {a∈C : a < c} & {b∈C : b 4 c} closed
⇐⇒ ∀{an} → a, {bn} → b ∈ C : an < bn ⇒ a < b
Insatiability: a > b =⇒ a < b (more < less)
Convexity: ∀α ∈ (0, 1) : a & b & c < b =⇒ αa+ (1− α)c < b
Prop: Convex < =⇒ convex sets of preferred bundles {a ∈ C : a < c}
EU: over consump path/lottery u(c, p) =

∑
ω∈Ω pωuω(c0, c1ω), c ∈ C.

Continuity: ∀ consumption c ∈ C, probas pa, pb, pc:
[c, pa] < [c, pb] < [c, pc] =⇒ ∃α ∈ (0, 1) : [c, pb] ∼ [c, (1− α)pa + αpc]
Indep: ∀ consumption c ∈ C, α, pa, pb, pc ∈ (0, 1): [c, pa] < [c, pb]
=⇒ [c, (1− α)pa + αpc] < [c, (1− α)pb + αpc]
Assume: u(c, p) = u(c0) + ρ

∑
ω∈Ω pωu(c1ω) with ρ ∈ (0, 1)

Marginal Utility: At consumption level c: u′(c)
Prop: Insatiability =⇒ u is strictly ↗, u′ > 0

Concave: u(αx+ (1− α)x′) ≥ αu(x) + (1− α)u(x′)
Prop: u concave & twice differentiable ⇐⇒ u′′ ≤ 0, u′ ↘

Risk-Aversion

Risk Aversion: E [u(w + x)] ≤ E [u(w)] for any E [x] = 0.
Risk Prem: E [x] = 0, EU u, wealth w: E [u(w + x)] = u(w − π)
Certainty Equivalent: u(wCE) = E [u(w)]

Abs RA: A(w) = −u
′′(w)

u′(w)
Prop: Small Gamble x: π ≈ 1

2A · Var (x)

(∵) E [u(w + x)] = u(w) + 1
2u
′′(w)E

[
x2
] !

= u(w − π) = u(w)-u′(w)π

Rel RA: R(w) = −w u′′(w)

u′(w)
Prop: Small Risk wx: πR ≈ 1

2R · Var (x)

(∵) E [u(w(1 + x))] = u(w(1− πR))
Prop: Pratt: Agents 1 & 2 w/ EU u1 & u2: A1(w) ≥ A2(w) ∀w
⇐⇒ u1(u−1

2 (·)) concave ⇐⇒ π1 ≥ π2, ∀w & fair gambles x
⇐⇒ ∃f s.t: f ′ > 0, f ′′ ≤ 0 & u1(w) = f(u2(w))
Risk Neutr: A(w) = R(w) = 0, Linear EU:u(w) = w

CARA: A′(w) = 0, Negative Exp EU: u(w) = −e−aw, a > 0
=⇒ CARA agents: A(w) = a, R(w) = aw

CRRA R′(w) = 0, Power EU u(w) = 1
1−γw

1−γ , γ > 1

=⇒ CRRA agents: A(w) = γ/w, R(w) = γ Prop: γ → 1⇒ Log EU

Log EU: u(w) = logw =⇒ CRRA agents: A(w) = 1/w, R(w) = 1
IARA/DARA: A′(w) ≷ 0 ; IRRA/DRRA:R′(w) ≷ 0
Quadratic EU: u(w) = w − 0.5aw2, a > 0, w ∈ [0, 1/a]
=⇒ IARA agents: A(w) = a

1−aw , R(w) = aw
1−aw

Optimal Consumption/Portfolio Choice

Setting: N non-redund assets, payoff D, price P
Agent: Endowt e = [e0, e

′
1]′, Consumpt plan c = [c0, c

′
1]′, Portf θ

EU: u(c) = u0(c0) + E [u1(c1)] with u′t > 0, u′′t < 0 (t = 0, 1)
Agnt Opt: maxθ u0(c0) + E [u1(c1)] s.t. c0 = e0 − P ′θ, c1 = e1 +Dθ
P ′θ = e0 − c0=time-0 savings
Assumptions (Complete Market)

Complete set of AD securities, State Price φ� 0
Agent: endowement e = [e0, e

′
1]′, wealth w = e0 + φ′e1

Budget: B(e) =
{
c : c0 + φ′c1 = w

}
(Simplify: ignore c ≥ 0)

Marginal cost = φω : Additional $1 in asset ω =⇒ c1ω ↗ by 1/φω

Proposition (Optimization) max
c0+φ′c1=w

u0(c0) +
∑
ω pωu1(c1ω)

Lagrang: L = u0(c0) +
∑
ω pωu1(c1ω)− λ

[
c0 + φ′c1 − w

]
→ ∂c0 , ∂c1

FOC: λ = u′0(c0) −→ marginal value of wealth

λφω = pωu
′
1(c1ω) =

∂E[u1(c1)]
∂θω

−→ margin benefit of ↗ c1ω = θωD1ω

ηω = φω
pω

=
u′1(c1ω)

u′0(c0)
= intertemp marg rate

of substitution
, φω
φ
ω′

=
pωu
′
1(c1ω)

p
ω′u
′
1(c

1ω′ )

Prop: ut strictly concave =⇒ u′t strictly ↘ & u′−1
t exists

Theorem (Optimal Portfolio Choice∗∗∗) Solve FOC:

c0 = u′−1
0 (λ) and c1ω = u′−1

1

(
λφωpω

)
∀ω ∈ Ω

where λ solves budget constraint: w = e0 + φ′e1 = c0(λ) + φ′c1(λ)

Characterization of Optimal Portfolio:

Proposition (Optimization) maxθ u0(e0 − P ′θ) + E [u1(e1 +Dθ)]

= maxθ u0(e0 − P ′θ) +
∑
ω pωu1

(
e1ω +

∑N
n=1 θnD1ωn

)
Euler Eqn: FOC: u′0(c0)Pn = E

[
u′1(c1)Dn

]
, n = 1..N

Prop: Portf Decomp: Agent’s t = 0 savings: w = e0 − c0 = P ′θ

=⇒ Optimal consumpt/portf choice: maxω {u0(e0 − w) + v1(w)}
v function: v1(w) = max{θ:P ′θ=w} E [u1(e1 +Dθ)]

Example: (Special Case) e1 = 0 (agent endowed only with e0 cash)
=⇒ Portf Choice Pb: v(w) = max{θ:P ′θ=w}E [u1(Dθ)]

Riskless asset: asset N with gross return Rn = 1 + rf

an = θnPn: $ invested in asset n =⇒ w =
∑
n an total investment

Portf payoff: w̃ = Dθ =
∑N
n=1 anRn = w(1 + rf ) +

∑N−1
n=1 an(rn − rf )

Excess Return of asset n: rn − rf

General Pb: r = [r1, . . . , rN−1]′ risky; a = [a1, . . . , aN−1]′ investment;

Optimal Portf: maxa E [u(w̃)] = maxa E
[
u
(
w(1 + rf ) + (r − rf ι′)a

)]
=⇒ FOC: E

[
u′(w̃)(rn − rf )

]
= 0 ∀n = 1..N − 1

Properties of Optimal Portfolio:
Case 1: Assume only ONE risky asset:

Prop: w̃ = w(1 + rf ) + a(r − rf ) (∵) borrow at rf , invest risky
Prop: Opt Investment a: Agent = strictly RA

a > 0 ⇐⇒ r̄ > rf ; a < 0 ⇐⇒ r̄ < rf ; a = 0 ⇐⇒ r = rf

Prop: risk-premium> 0 =⇒ agent invest at least ε in risky asset

Proposition (Abs RA) Assume r̄ − rf > 0 (so a > 0)
a′(w) > 0⇔ A′(w) < 0 (DARA) ; a′(w) = 0⇔ A′(w) = 0 (CARA)
a′(w) < 0⇔ A′(w) > 0 (IARA −→ very rare)

Prop: You see from FOC diff: da
dw = −(1 + rf )

E
[
u′′(w̃)(r−rf )

]
E[u′′(w̃)(r−rf )2]

Relative Propensity: for investor in risky asset: e(w) = w
a
da
dw

Note: e(w) = 1⇔ a(w) = ā ·w: risky investM = CST fract◦ of wealth

Prop: Rel RA: Assume r̄ − rf > 0 (so a > 0)

e(w) > 1⇔ R′(w) < 0 (DRRA) ; e(w) = 1⇔ R′(w) = 0 (CRRA)
e(w) < 1⇔ R′(w) > 0 (IRRA −→ very rare)
Case 2: Assume MULTIPLE risky assets:

Prop: w̃ = w[(1 + rf ) + a′(r − rf ι)]
Theorem (Opt Investment a) a = 0⇔ E [rn] = rf ∀n = 1..N − 1

Theorem (Opt Investment a II) Some risk-prem on risky assets 6=0

=⇒ E [rportf] > rf (i.e.,
∑N−1
n=1 an(E [rn]− rf ) ≥ 0)

Prop: USEFUL FORMULAS: w̃ = w(1 + rf ) + a(r − rf )

w̃ = w[(1 + rf ) + a′(r − rf ι)] = w[Rf + a′(R̃− Rf ι)]
c1 = (w0 − c0)Rf + a(R̃− Rf ) ; w0 = e0 − c0
c1 = e1 + w(1 + rf ) + a(r − rf ) = e1 + (e0 − c0)(1 + rf ) + a(r − rf )

w̃ =
∑N
n=1 θnDn︸ ︷︷ ︸

Asset n
Payoff

+ 1
P0

(∑N
n=1 Pn︸︷︷︸

t=0 wealth
(endowment)

−
∑N
n=1 θnPn︸ ︷︷ ︸

wealth invested
in risky assets

)

FSD: A &FSD B ⇐⇒ ∀u′ ≥ 0 : E [u(rA)] ≥ E [u(rB)]
Prop: A &FSD B =⇒ r̄A ≥ r̄B but converse FALSE!

Prop: A &FSD B ⇔ FA(x) ≤ FB(x) ∀x ⇔ rA
d
∼ rB + ε, with ε ≥ 0

Ordering: A &FSD B =⇒ : for u′ > 0, u′′ < 0

maxa E
[
u(w(1 + rf ) + a(rA − rf ))

]
≥maxa E

[
u(w(1 + rf ) + a(rB − rf ))

]
SSD: A &SSD B ⇐⇒ ∀u′′ ≤ 0 : E [u(RA)] ≥ E [u(RB)]
Prop: ONLY WORKS IF R̄A = R̄B !

Prop: A &SSD B =⇒ Var (RA) ≤ Var (RB) but converse FALSE!

Prop: Rothschild-Stiglitz: A &SSD B

⇐⇒ E [RA] = E [RB ] and
∫ y
0

[FA(x)− FB(x)]dx =: S(y) ≤ 0 ∀y
⇐⇒ RA

d
∼ RB + ε, with E [ε|RB ] = 0

Prop: RA ∼ N(µ, σ2
A), RB ∼ N(µ, σ2

B): σA < σB =⇒ A &SSD B



In Practice

Consumption Choice Problem 1:

Setup: M=2 states, N=2 assets (1 RF + 1 risky)

t=1 returns: R=

[
1 u
1 d

]
, probs: πu, πd.

Agent: initial wealth w0, final w1 = 0.
Portf Weights (RF/Risky asset): α = [α1, α2]′

Max Prob: max
c0,c1,α

log c0 + βE [log c1]

2 Budget Constraints: c1 = (w0 − c0)Rα
(a) Find optimal α = α(w0, c0, c1):

Complete Market: ∃R−1 =⇒ α = 1
w0−c0

R−1 · c1
(b) Rewrite Constraints Using Only (w0, c0, c1):

φ = P ′R−1 with P = [1, 1]′ so ηu = φu
πu
, ηd =

φd
πd

=⇒ Constraint: w0 := c0 + E [ηc1] = c0 + πuηuc1,u + πdηdc1,d
(c) Optimize over (c0, c1) + Find c0(λ), c1(λ):

max
c0,c1

log c0 + βE [log c1] s.t. w0 = c0 + πuηuc1,u + πdηdc1,d

L = log c0 + βE [log c1]− λ (c0 + πuηuc1,u + πdηdc1,d − w0)
c0
=⇒ λ = 1/c0 ; c1,s=⇒ λπsηs = βπs/c1,s with s = u, d

=⇒ c0 = 1
λ c1,u = β

ληu
=

c0β
ηu

c1,d = β
ληd

=
c0β
ηd

(d) Plug λ in constraint + Get λ = λ(w0):

w0 = c0 + πuηuc1,u + πdηdc1,d = 1
λ + πuβ

λ +
πdβ

λ

=⇒ λ = 1+β
w0

(e) Get c0(w0), c1(w0):

c0 =
w0
1+β c1,u = β

1+β
w0
ηu

c1,d = β
1+β

w0
ηd

Consumption Choice Problem 2:

Setup: 1 RF (return rf ) + 1 Risky asset:

r = r̄ + σε ε ∼ N(0, 1) (r̄ > rf )
Agent: e0 > 0 and e1 = hε (h > 0)

Maximize: max
c0,c1

−e−αc0 − ρE
[
e
−αc1

]
, α > 0 cst

(a) Invest a in risky asset:

Write t = 1 consumption c1 = c1(e0, e1, c0, a, r
f , r)

c1 = e1 + w(1 + rf ) + a(r − rf ) = e1 + (e0 − c0)(1 + rf ) + a(r − rf )
(b) Write optimal portf choice problem:

max
c0,a
−e−αc0 − ρE

[
e
−α

(
e1+(e0−c0)(1+rf )+a(r−rf )

)]
(c) Write FOC: d

da and d
dc0

(d) Solve FOC for Opt Portf Choice problem: Get a, c0
(e) How does h influences c0 and a?

c0 ↘ in h. Higher uncertainty about e1 =⇒ lower certainty
equivalent of this payoff. When h is high: agent feels poorer ⇒ wants
to consume less.
a↘ in h. Higher uncertainty about e1 =⇒ less willingness to invest
in the risky asset (adds risk to c1).
Consumption Choice Problem 3:

Setup: 1 RF (asset 0) +N risky assets: n = 1, .., N

Returns: R0 = Rf = 1 and Dn = D̄ + εn (n = 1..N), εn
iid∼ N(0, σ)

Prices: P0 = 1, Pn = P for all n
Agent: CARA u(w) = −e−aw, a > 0
Endowment: 1 share of each asset n, 0 shares of RF.
Portfolio holdings of risky assets: θ = [θ1, . . . , θN ]′ ∈ RN
(a) Write agent’s wealth w̃ at t = 1:

w̃ =
∑N
n=1 θnDn︸ ︷︷ ︸

Asset n
Payoff

+ 1
P0

(∑N
n=1 Pn︸︷︷︸

t=0 wealth
(endowment)

−
∑N
n=1 θnPn︸ ︷︷ ︸

wealth invested
in risky assets

)

(b) Write Optimal Portf Choice Pb:

max
θ

E
[
−e−aw̃

]
s.t. w̃ =

∑N
n=1 θnDn +

∑N
n=1(1− θn)Pn

Dn
iid∼ N(D̄, σ2)

=⇒ w̃ ∼ N
(∑N

n=1 θnD̄n +
∑N
n=1(1− θn)Pn, σ

2∑N
n=1 θ

2
n

)

⇒ −aw̃ ∼ N
(
−a
∑N
n=1 θnD̄n − a

∑N
n=1(1− θn)Pn, a

2σ2∑N
n=1 θ

2
n

)
E
[
−e−aw̃

]
=−exp

(
−a
∑N
n=1 θnD̄n − a

∑N
n=1(1− θn)Pn + a2

2 σ
2∑N

n=1 θ
2
n

)
=⇒ max

θ

N∑
n=1

θnD̄n +
N∑
n=1

(1− θn)Pn −
a

2
σ

2
N∑
n=1

θ
2
n

(c) Solve Optimal Portf Pb: FOC w.r.t. θn

D̄ − Pn − aσ2θn = 0 =⇒ θn = D̄−Pn
aσ2

(d) Show: for different values of RA a, 2-Fund Separation Holds:

Initial Wealth of Agents: w0 =
∑N
n=1 Pn

=⇒ agents invest optimally fractions
θnPn
w0

= 1
a

(D̄−Pn)Pn
w0σ

2 of wealth in asset n

and 1− 1
a

(D̄−Pn)Pn
w0σ

2 in RF asset

=⇒ agents hold lin comb of RF asset

and risky portf xM = [x1, . . . , xN ]′ (xn =
(D̄−Pn)Pn
w0σ

2 )

Depending on RA: Hold 1
aXM in risky & 1− 1

aX
′
M ι in RF

(e) If agent = only agent in market

Find Equilibrium Risky Prices Pn

Market Clearing: 1
!
= θn = D̄−Pn

aσ2 =⇒ Pn = D̄ − aσ2

(f) Find Risk Premium on Risky Assets + N→∞ Limit:

πn = R̄n − Rf = E [Rn]− 1 =
E[Dn]
Pn

− 1 = aσ2

D̄−aσ2 indep of N

(g) Does APT Hold in this Market when N→∞?

∃ Asymptotic Arbitrage in this Market: (so APT can’t hold)

Seq of arb portfs: θN0 = −1, θNn = 1
N ∀n

=⇒ E
[
rθN

]
=
∑N
n=1

1
N r̄n − 1 = r̄1 − 1 = π1 = aσ2

D̄−aσ2 > 0

While Var
(
rθN

)
=
∑N
n=1

1
N2 Var (εn) = σ2

N → 0
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